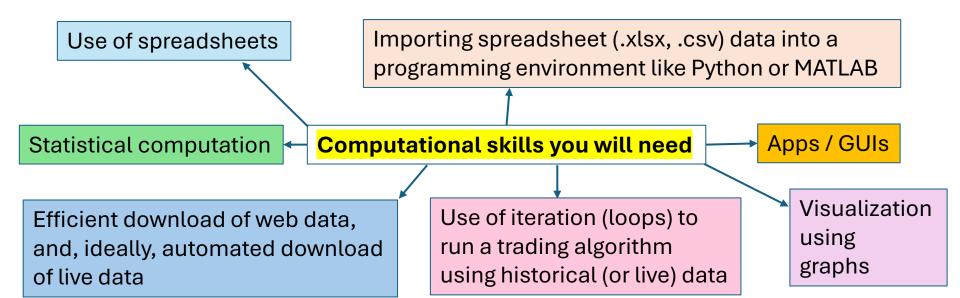
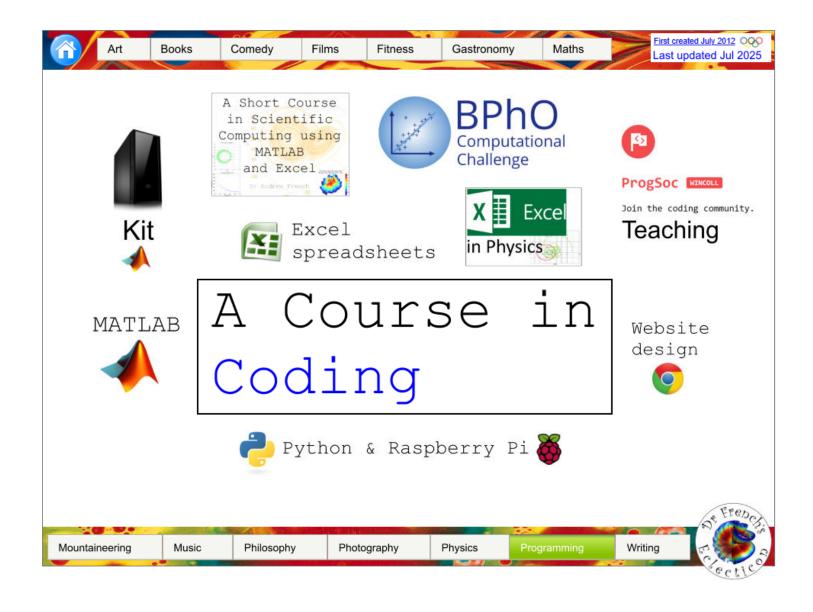

£\$£\$£\$£ zbroker computational trading challenge




Devised by Dr French. August 2025.

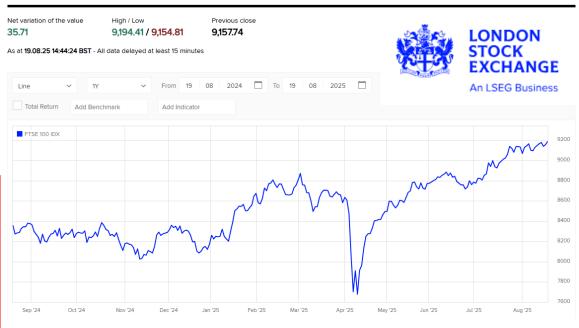
Welcome to the zbroker computational trading challenge! This initiative works a bit like the British Physics Olympiad (BPhO) Computational Challenge.

- You can work individually or in pairs
- You have a few months to complete as many of the tasks as possible
- You have a free choice of computational tools (although we recommend MATLAB and/or Python). For maximum enjoyment, you will need to develop programming skills, rather than just using a spreadsheet.
- Tasks all involve the development of useful computational skills (see below)
- Output is a two minute (MAX) YouTube video describing your solutions to the tasks.
- The **best five** will have **five minutes** to present their work at a live event, and the overall winner and runner-up will be decided by the judges.

Dr F's PROGRAMMING RESOURCES

FTSE100

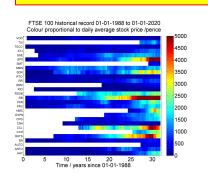
There are many other famous stock exchanges such as the New York Stock Exchange (NYSE), which is the largest.

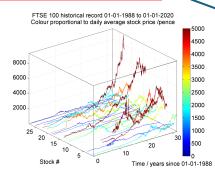

Shares (or 'equities') in corporations are traded in **stock exchanges** like the **London Stock Exchange (LSE).** Using automated trading algorithms, trades can occur *extremely fast*, potentially at time intervals of only a few hundred microseconds!

The 100 largest companies traded on the LSE comprise the **Financial Times Stock Exchange, or <u>FTSE100</u>.** The total value of the FTSE100 'ticker' is the **share price** of each of the 100 listed companies **multiplied by the number of shares** in circulation per company, and then **divided by an arbitrary number** to keep the index at a manageable value.

As of 19/8/25, the total 'market capitalization' of The FTSE 100 is £2.225 trillion.

TASK 1: Download historical FTSE100 indices (at close per day) and market capitalization. and paste the data into a spreadsheet. Plot index, market capitalization and their ratio vs time.




How constant is the 'arbitrary number' which divides total market capitalization to yield the FTSE100 index?

TASK 2: Download historical FTSE100 closing share price vs time for the top 30 'components' of the FTSE100. (Challenge: download the whole 100 although note individual companies may move in and out of the FTSE100). Chose a time interval of at least ten years.

Note the FTSF100 index started on 3rd January 1984. A sensible idea might be to download a dataset to an individual .csv file, then combine into a data structure in MATLAB/Python etc.

Then plot share price (in £) vs time for each company.

Summary

Chart

Options

SDR.L

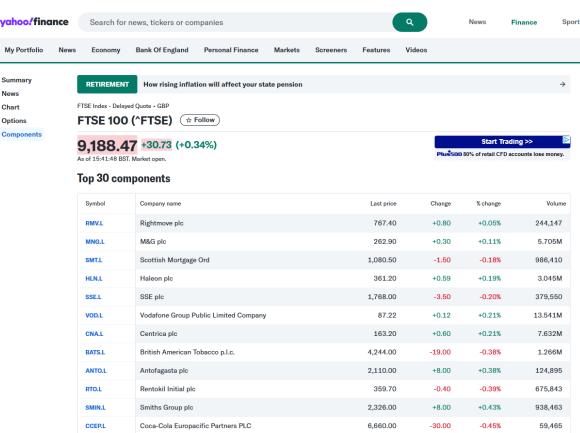
AUTO.L

ENT.L

EXPN.I

CCH.L

Schroders plc


Entain Plc

Shell plc

Experian plo

Coca-Cola HBC AG

Auto Trader Group plo

Can you write a computer program that downloads stock prices to a file at a pre-determined time interval? e.g. every minute or hour or day?

396.80

816.00

877.20

2,649.50

3,844.00

3,922.00

+0.46%

+0.52%

-0.57%

+0.63%

+0.76%

+0.77%

238,007

398,616

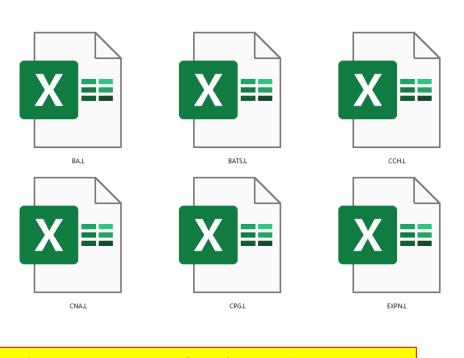
262,745

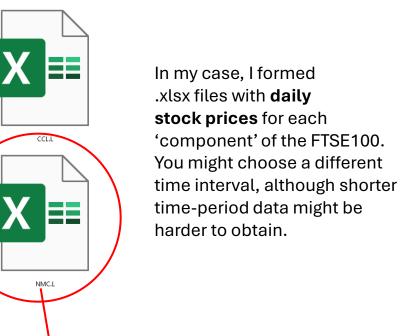
2.795M

242,458

78,748

+1.80


+5.20

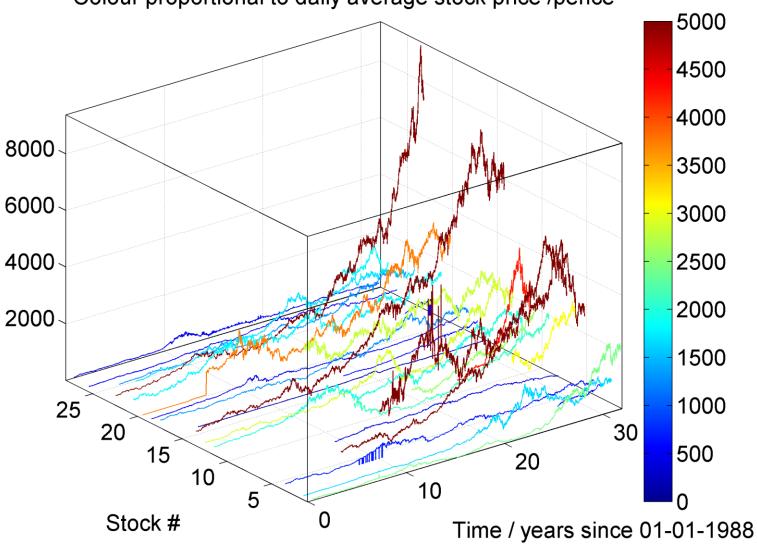

-4.80

+17.50

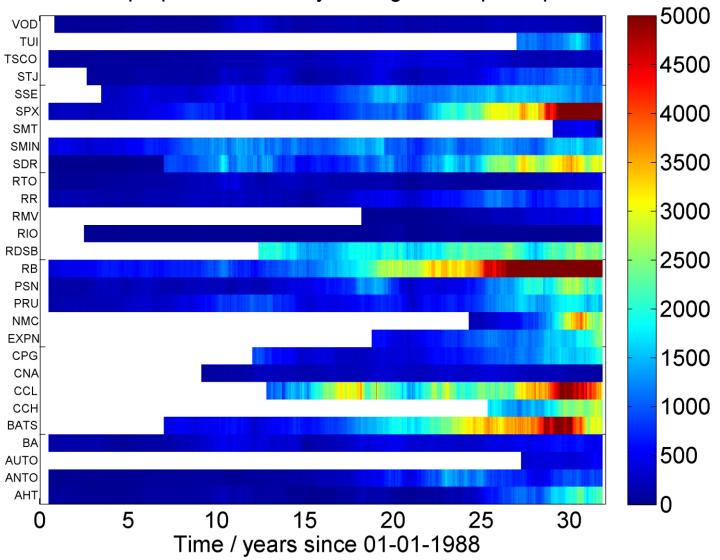
+35.10

+34.00

TASK 2: Download historical FTSE100 closing share price vs time for the top 30 'components' of the FTSE100. (Challenge: download the whole 100 – although note individual companies may move in and out of the FTSE100).


Chose a time interval of at least ten years.

Note the FTSE100 index started on 3rd

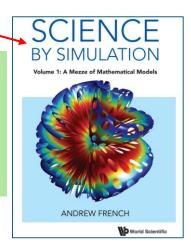

January 1984. A sensible idea might be to download a dataset to an individual .csv file, then combine into a data structure in MATLAB/Python etc.

	Α	В	С	D	Е	F	G	ŀ
1	Date	Open	High	Low	Close	Adj Close	Volume	
2	02/04/2012	210	225	207	210	199.3336	5149051	
3	03/04/2012	211	224.25	209.75	224.25	212.8598	2668686	
4	04/04/2012	222	224.5	219	224.25	212.8598	95266	
5	05/04/2012	225	225.25	223.75	229.75	218.0805	2002829	
6	10/04/2012	227	234	225	230	218.3177	55816	
7	11/04/2012	215	220	214.5	220	208.8257	638447	
8	12/04/2012	220	220	215	219	207.8765	580616	
9	13/04/2012	220	220	214	215	204.0796	327874	
10	16/04/2012	215	215	214.8	220	208.8257	643835	
11	17/04/2012	214	216.5	212	215	204.0796	1227748	
12	18/04/2012	217.5	225	214	222	210.7241	151298	
13	19/04/2012	230	230	216.75	216.75	205.7407	112938	
14	20/04/2012	220	230	218	224	212.6225	2144	
15	23/04/2012	223	223	215	217	205.9781	12538	
16	24/04/2012	217	217	214	215	204.0796	237395	

FTSE 100 historical record 01-01-1988 to 01-01-2020 Colour proportional to daily average stock price /pence

FTSE 100 historical record 01-01-1988 to 01-01-2020 Colour proportional to daily average stock price /pence

TASK3: Now you have access to share price vs time data (historical, and ideally updated every second or hour or day via an automated program – see TASK4), code up the **zbroker share trading algorithm.** This is a very simple process, designed to understand the concept of share trading, and was published in **Science by Simulation:** A Mezze of Mathematical Models.


Example graphs are those published in this book.

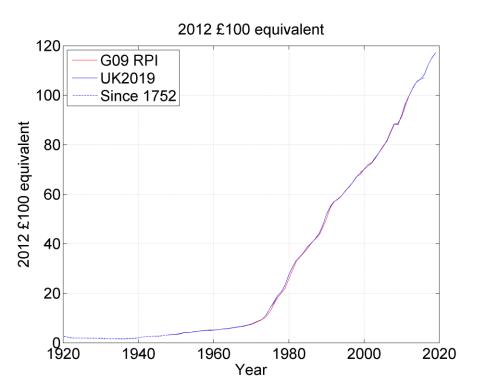
Start with $\pounds x_0$ portfolio at time t = 0. Assign this to stocks within the FTSE100. e.g. $\pounds 1000$, at $\pounds 10$ for each company. Or choose your own initial stock-picking assignment. e.g. 'random', 'top 30...'

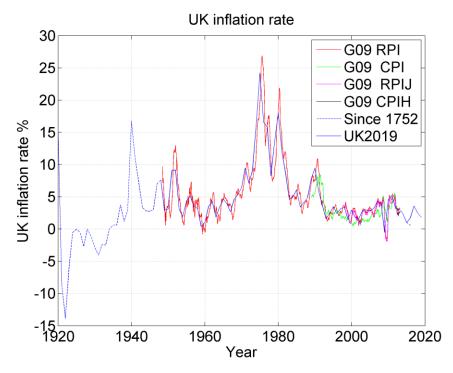
Build up N stock prices for companies in a particular stock exchange (e.g. the FTSE100) at time interval Δt . Determine **moving averages** and **standard deviations** over this period.

Compute:

 $z = \frac{\text{stock price} - \text{mean value of stock price}}{\text{standard deviation of stock price}}$

For subsequent Δt time intervals, add most recent prices into the array of N prices, and remove the oldest.

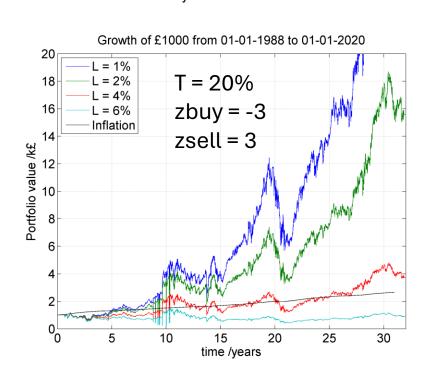

Now **order stocks by size of** z **and sell up to** T **%** of the total portfolio of those with z **values above** z **sell.** This will generate some cash. Assume a L% **transaction loss.**

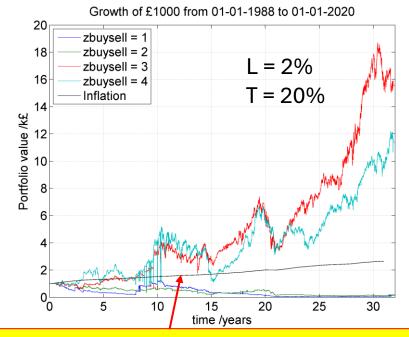

Now use this cash to buy stocks which have z values less than $z_{\rm buy}$. Assume a L% transaction loss.

Repeat process, and **plot graphs** of portfolio value vs time.

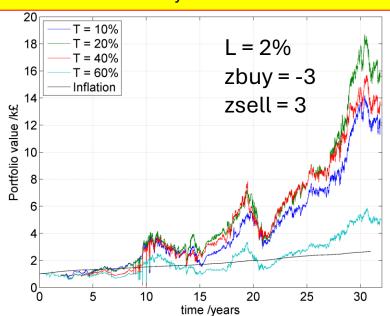
Experiment with different *L*, *T*, z_{buv} , z_{sell} and *N* (and or Δt) values.

We shall assume our small volume of trades don't affect the stock market!





TASK3a: Download data on the UK inflation rate, and use to determine the equivalent value of $\pounds x$ at time t, compared to time t = 0.


z = (stock - mean)/volatility 30 day moving window TUI TSCO STJ SSE SMIN 2 SDR RTO RR RMV RIO RDSB 0 RB PSN -1 NMC EXPN CPG -2 CNA CCL -3 ССН BATS AUTO ANTO AHT -5 10 15 20 25 30 5 0 Time / years since 01-01-1988

FTSE 100 historical record 01-01-1988 to 01-01-2020

Compare graphs to the original portfolio value $£x_0$, subject to **inflation**. Your investments need to exceed this line to 'have made money.'

TASK4: Build an automated virtual trading program based upon zbroker that:

- Extracts live FTSE100 (or other stock exchange) share prices at time interval Δt using an elegant, automated method.
- Runs the z-broker algorithm (or a modified version, or indeed your own idea!)
- Displays history of portfolio value in some form of GUI or website or app
- Enable user to be able to dynamically change L, T, z_{buy} , z_{sell} , Δt , N
- Refine algorithm to optimize portfolio gain perhaps with extra rules that automatically adjust the parameters L, T, $z_{\rm buv}$, $z_{\rm sell}$, Δt , N.

The **winner** of the competition will *probably* be the one that makes the most virtual money (i.e. has the largest portfolio % gain over the competition time period), although significant weight will be given to:

- (i) the quality of the YouTube (and live presentation),
- (ii) the clarity and elegance and inventiveness of the programming solutions to the tasks (especially TASK 4).

Note: **zbroker** is based upon the share prices being **normally distributed** over a time interval $N\Delta t$. An **extension** could be to guess a *different distribution*, and adapt z_{buy} , z_{sell} accordingly.

e.g. log-normal, or skew-normal...

Another extension could be to model a regular (external) cash investment into the portfolio. This is how a stocks & shares ISA savings scheme works in the UK.