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Calculating the radius of the Earth 

• Earth-Moon 
distance 

• Moon 
radius

• Earth-Sun 
distance

• Sun radius

Kepler’s 
Laws,
planetary 
orbits

Speed 
of light

Nearby 
stars by
parallax

Main Sequence
stars via 
HR diagram Galaxies via 
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Universe using Hubble law

1

2

3

4

5

6

7

8

9



1. Calculating the radius of the Earth

Eratosthenes 
(276BC-194BC)
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1. Calculating the radius of the Earth

Al-Biruni
(973-1050)

Khwarazmian Iranian scholar 
and polymath during the Islamic Golden Age
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2. Calculating the distance of the moon from the earth, 
and the radius of the moon
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2. Calculating the distance of the moon from the earth, 
and the radius of the moon
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3. Calculating the Earth-Sun distance and the radius of the Sun

Aristarchus
 of Samos
(310-230BC)
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3. Calculating the Earth-Sun distance 
and the radius of the Sun

NOT 
TO SCALE!

23,386r R 

60mr R 
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1737 kmmR =

6378 kmR =

During a total solar eclipse, the moon obscures the
Sun almost exactly*. Hence by similar triangles:

*The Moon’s orbit is slightly elliptical, meaning the Earth-Moon distance varies from 57 to 64 Earth 
radii. This means you can get an annular eclipse, which means a ‘fiery ring’ around the moon. 
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4. Calculating the orbits of the planets in the Solar System

The Solar System to Scale 

https://www.youtube.com/watch?v=zR3Igc3Rhfg


Isaac Newton
(1642-1727) developed
a mathematical model of 
Gravity which predicted the 
elliptical orbits proposed by 
Johannes Kepler (1571-1630)
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For our 
Solar 
System: ( )
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Johannes Kepler
1571-1630

Kepler’s 
Third Law



An improved calculation of the Earth-Sun distance
using the transit of Venus
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The Exploratorium: Transit of Venus
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From Kepler III
and orbital period of Venus
of 225 days.

1769 transit
Mayer went to St Petersburg,
Hell to Norway, Dymond went to 
Hudson Bay and Cook to Tahiti

1deg = 3600 arcseconds

Need precise times
of transit observations
and elevation angles from, say, 
the bottom of solar disc.
Compare elevations of 
observations from A and B to get .

https://annex.exploratorium.edu/venus/question4.html
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You could begin with
all zero, or perhaps a
random angle for each
planet’s orbit.



Calculating orbit angle vs time

Equal areas swept out in 
equal times
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How Kepler determined the elliptical orbit of Mars 
(and indeed the other planets)

Terence Tao: The Cosmic Distance Ladder Part 1 (3Blue1Brown)

Planets and Sun not to scale!
Axes scales in AU.
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ATTEMPT #1:  Assume Earth’s orbit about the Sun
is circular, with radius approximately 1AU.

149,597,870,700 m1AU =Astronomical Unit (AU) defined in 2012

Mars 
orbital 
period

Measure angles  and  at times separated by one 
Mars orbital period T. Hence (x,y) coordinates of 
Mars should remain the same.
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Use this expression to work out orbit of Mars using the 
angles  and  Note the latter could have been measured 
from Earth since ancient times!

Johannes Kepler
1571-1630
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Exact orbit using Kepler’s laws
Mars:  a = 1.523,  = 0.09.

Use this to generate 
simulation data!

https://www.youtube.com/watch?v=YdOXS_9_P4U
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This data is generated from the exact Kepler orbits, rather than 
the actual historical data Kepler obtained from Tycho Brahe! Tycho Brahe

1546-1601

Best fit to Mars’ orbit is an ellipse. 
This justifies Kepler’s First law



Planets and Sun not to scale!
Axes scales in AU.
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What if the Home planet orbit is not circular? 
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If know T, (t), d/dt then can work out eccentricity . Get a from T. Hence calculate x(t), y(t).

Let’s assume
we know 
Kepler’s laws! From Kepler II,III
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Planets and Sun not to scale!
Axes scales in AU.
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What if the Home planet orbit is not circular? (cont.) 
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find eccentricity

If know T, (t), d/dt then can work out 
eccentricity . Get a from T. Hence calculate 
x(t), y(t).



Planets and Sun not to scale!
Axes scales in AU.





( ),X Y

( ),x y

Calculating planet orbit from elliptical orbit of home planet

Exact orbit using Kepler’s laws
Mars:  a = 1.523,  = 0.09;   Earth:  a = 1.00,  = 0.01.

Assume we now know what the home planet’s orbit is.

Astronomical Unit (AU) defined in 2012

Measure angles  and  at times separated by one 
Mars orbital period T. Hence (x,y) coordinates of planet 
should remain the same.
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Use this expression to work out orbit of planet using the angles 
 and  Note the latter could have been measured from Earth 
since ancient times!
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This data is generated from the exact Kepler orbits, rather than the actual 
historical data Kepler obtained from Tycho Brahe!
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Data generated for a home planet of eccentricity 0.8 and planet of eccentricity 0.9



Now we have a model of x(t) and y(t) of solar system orbits …..
… Construct a solar system spirograph!

Choose a pair of planets and determine their orbits vs time. At time intervals of t, draw 
a line between the planets and plot this line. Keep going for N orbits of the outermost 
planet.
N = 10 ,  t = N x maximum orbital period /1234, might be sensible parameters.

inspired by: https://engaging-data.com/planetary-
spirograph

https://engaging-data.com/planetary-spirograph/
https://engaging-data.com/planetary-spirograph/
https://engaging-data.com/planetary-spirograph/
https://engaging-data.com/planetary-spirograph/
https://engaging-data.com/planetary-spirograph/






Plot the orbits of the other bodies in the solar system, with a chosen object (e.g. 
Earth) at a fixed position at the origin of a Cartesian coordinate system. i.e. choose 
a coordinate system where your chosen object is at (0,0,0).

Claudius Ptolemy  
(100-170 AD)

It is perfectly fine for 
the Earth to be the 

centre of the Universe! 
Just don’t expect those 

nice ellipses that 
Johannes will discover 
in about 1500 years...







5. Calculating the speed of light using the 
occultation  of Io by Jupiter

Ole Rømer
1644-1710

Christiaan 
Huygens
1629-1695

immersion

emergence

Sun

Earth

Jupiter Io

• Io orbital radius 421,000km about Jupiter, period 42.46 hours (1.769 days)
• Jupiter orbital radius about Sun is 5.20AU, period 11.86 years
• Earth orbital radius about Sun is 1AU, period 1 year

mid occultation

Jd

y

x

Jupiter orbits more slowly than Earth, 
so distance between Earth 
and Jupiter varies

1AU cos 2
Yr

1AU sin 2
Yr

t
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t
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 
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5.2AU cos 2
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 
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 
=   

 

Jd

t is model time

This time incorporates
the light travel time
between Io and Earth

cos 2
42.46hr

sin 2
42.46hr

Io J Io

Io J Io

t
x x r

t
y y r





 
= +  
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Earth

Planets and Sun 
not to scale!

Line between 
Earth and Jupiter
drawn at 1000 
points over one
Jupiter orbit

Using Kepler’s laws to determine orbital
positions vs time of Earth, Jupiter and Io, plot the 
time delay between the measured time of a mid-
occultation, and that predicted by the model, vs 
Earth to Io distance in AU.

( )

( )

11

8 -1
6.011 4.409 1.496 10 m

3.0 10 ms
3000 2200 s

c
−  

= = 
−

Gradient of the Earth to Io distance vs time delay
graph is the speed of light

i.e. not accounting for 
light-travel time delays



x

a

a




Record the angular 
change   in the 
position of a star over 
the course of a year, 
i.e. as the Earth orbits 
the Sun.

This assumes the stars 
are fixed relative
to the Earth over this 
timescale!

1
2

1
2

sin

sin

x a

a
x





 =

=


a = 1AU =  1.496 x 1011 m

The parallax of our nearest star outside of the solar system 
(Proxima Centauri) is  = 1.53626 arc-seconds. 

o

1
2

1.53626 1
268,532AU

3600 sin
x


 =  = =



Earth

Sun

16

16

15

4.02 10 m

4.02 10
4.25 light-years

9.461 10

x

x

= 


= =



Caution! Parallax is often stated as  6. Calculating the distance to 
     nearby stars via parallax



Astronomical length scales

Astronomical Unit (approximately the 
Earth-Sun distance)

Light-year 
8 -1

7

7

15

2.998 10 ms

365 24 3600 3.15 10 s

10 s

1ly  9.461 10 m

year

year

year

c

t

t

ct



= 

   = 

 

= = 

o

5

16

1
1AU 1pc tan

60 60

1pc 2.063 10 AU

1pc m3.086 10

 
=   

 

=





=

Parsec

p

60 arc minutes = 1 degree
60 arc seconds = 1 arc minute

calculated from more
precise light speeds and year 
durations

111AU 1.496 10 m= 



7. Calculating the 
distance to stars 
from Luminosity
and Colour

r

L

Power per m2 received from star is:
24

L

r
 =

The HR diagram predicts Luminosity
of a star vs the colour of the star, which
is related to its surface temperature.

max

2,900μm
T


 Wien’s law

Total power
emitted 

4

L
r


 =


Distance to star

L

max

Peak of emission 
spectrum from star

Wilhelm Wien
1864-1928

L
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8. Calculating the distance to galaxies via 
Cepheid variable stars

https://en.wikipedia.org/wiki/Cepheid_variable

Cepheid variables – simply curious

Durham Astrolab

https://astronomy.swin.edu.au/sao/downloads/HET611-M17A01.pdf

10 10

26

log 1.15log 2.47
days

3.828 10 W

L P

L

L

   
= +   

  

= 

Current solar Luminosity
compared to earlier and predicted
Epochs.

L

RS Puppis, one of the brightest 
Cepheid variable stars in the 
Milky Way

28 0.43.0128 10 W 10 ML −=  

Luminosity to Bolometric magnitude M

Henrietta Swan Leavitt
1898-1868

H. Leavitt discovered (in 1908) that bright variable
stars exhibit a correlation between average luminosity
and period of variation. So measure star flux and period, 
and you can calculate the distance to the star.
This enables distance measurements (e.g. to nearby 
galaxies) up to 65 million light years.

24 4

L L
d

d 
 =  =


Star radiant 
Flux in W/m2.

Distance 
to star

Star luminosity

L L

One Luminosity- period Cepheid correlation
There are several types!

The pulsation mechanism for Cepheids is thought to result
from double ionization of Helium, which changes the 
opacity of a star, heating it up … which causes it to expand, then cool …
… which then reduces the Helium ionization, resulting in a thermodynamic cycle.

A. Eddington’s model

https://en.wikipedia.org/wiki/Cepheid_variable
https://simplycurious.blog/2017/07/24/cosmology-cepheid-variables-or-why-henrietta-couldnt-leavitt-alone-post-4/
https://simplycurious.blog/2017/07/24/cosmology-cepheid-variables-or-why-henrietta-couldnt-leavitt-alone-post-4/
https://simplycurious.blog/2017/07/24/cosmology-cepheid-variables-or-why-henrietta-couldnt-leavitt-alone-post-4/
https://astrolab.awh.durham.ac.uk/cepheid.html
https://astrolab.awh.durham.ac.uk/cepheid.html
https://astrolab.awh.durham.ac.uk/cepheid.html
https://astronomy.swin.edu.au/sao/downloads/HET611-M17A01.pdf
https://astronomy.swin.edu.au/sao/downloads/HET611-M17A01.pdf
https://astronomy.swin.edu.au/sao/downloads/HET611-M17A01.pdf


9. Calculating the scale of the observable Universe using Hubble’s law

Edwin Hubble was perhaps the first 

astronomer to show that most galaxies (i.e. 

objects with distances of 10Mpc or more) 

have a recessional velocity v which is 

proportional to the distance d away from 

Earth*. 

H0 is the ‘Hubble constant’, which has a modern value 

of about 71.9 km/s /Mpc. It is not really a constant, as it 

relates to the scale of Universe expansion, which is 

thought not to be linear. The zero suffix therefore 

means ‘at the current epoch.’

Hubble’s law implies that the Universe is expanding. If 

we consider just the radial motion due to expansion 

(imagine a sponge being continuously enlarged, and 

tracking the relative distances between pairs of holes) 

and assume this is at a constant rate throughout time t , 
we can therefore make an estimate of the age of the 

Universe.

0 0

0

1
3 -1

22

1
,

71.9 10 ms
13.6billion years

3.086 10 m

d d
v v H d H d t

t t H

t

−

= =  =  =

 
 = = 

 

As of 2017, the best estimate for the age of the Universe is 

13.799 +/- 0.021 billion years using the Lambda-CDM model and 

observations of the Cosmic Microwave Background (CMB) radiation via 

Planck and Wilkinson Microwave Anisotropy (WMAP) probe (and 

others). 

1Mega-parsec 

(Mpc) 

=  3.086 x1022 m

*The Cosmological Principle means all parts of the Universe are 

expanding uniformly relative to everywhere else, at a given time since the 

Big Bang. The Hubble law would therefore be the same from the 

perspective of a planet in another galaxy as it is on Earth.

Edwin Hubble 

1889-1953

0v H d=



Doppler shift method for measuring radial velocity

If an object emitting radiation at frequency
f moves radially towards an observer at
velocity v, the observer will measure a 
slightly higher frequency of radiation as the 
emitted waves ‘bunch up’.

Christian 
Doppler
1803-1953

c f =

v
f f

c
 =

v

frequency 
change

Speed of 
radiation

Frequency 
of emitted 
radiation

Velocity of 
emitter towards 
observer

Note this formula is ‘Classical’. It is valid when 
Otherwise a relativistic version must be used.

v c



Redshift  z is the 
fractional change in 
wavelength of light due to 
the doppler effect

observed emmitted

emmitted

z
 



−
=

Compare spectral lines emissions from
elements like Hydrogen and Helium
from stars to those measured in the lab.

https://en.wikipedia.org/wiki/Hydrogen_spectral_seriesHydrogen emission spectra

https://en.wikipedia.org/wiki/Hydrogen_spectral_series


Notice the n-2 dependency of photon

energy, decaying from the maximum

possible of 13.6eV (for Hydrogen)
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