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Cosmology: Structure and Evolution of Stars

Protostars form from the gravitational collapse of gas and dust within nebulae or molecular clouds into rotating balls of 

(mostly) high temperature gas. If the protostar mass is less than about 0.08 solar masses, its core temperature is insufficient for 

nuclear fusion of hydrogen. But if deuterium fusion is theoretically possible, these protostars will eventually be classified as 

Brown Dwarfs. These will shine dimly (mostly in the IR spectrum), and fade away slowly over hundreds of millions of years.

If the protostar mass is less than about 8 solar masses (but more than 0.08), the core temperature will eventually reach about 

10 million K, which is sufficient for the p-p chain reaction to initiate hydrogen fusion. This forms a low-mass star (like our 

Sun), which, after billions of years of stability, will eventually swell to a red giant and eventually dissipate, leaving a white dwarf 

(not really a star any more since fusion ceases) and ultimately a black dwarf. Unless the red giant forms a binary with a white 

dwarf and transfers mass such that the white dwarf exceed 1.44 solar masses. This results in a Type 1a supernova, with no 

remnant.

If the protostar is over 8 solar masses, it forms a massive star, which will eventually 

swell to form a red (or perhaps blue) supergiant. Nuclear fusion progresses from 

hydrogen to heavier elements as its internal temperature increases, until it reaches iron. 

Iron fusion produces no net energy output, so thermal pressure is insufficient to counter 

gravitational collapse. If the star is less than about 40 solar masses it will undergo a 

Type II supernova*. Above this mass, it is theorized that the star will collapse directly to 

a Black Hole without a supernova. If the star is less than about 20 solar masses, the 

core of the supernova remnant will form a neutron star. If this is highly magnetized and 

rotating, this neutron star will emit intense beams of EM radiation as a pulsar. Between 

20 and 40 solar masses, the star will undergo a Type II supernova and the remnant 

will collapse to form a Black Hole. A supermassive black hole (millions of billions of 

solar masses) will accrete rings of gas, and can produce intense jets of EM radiation. 

Most galactic centres are thought to be supermassive black holes, and 

electromagnetically active ones are called quasars.

This bit might not quite be correct! BH formation might be direct (i.e. sans 

supernova) for stars above about 40 solar masses.

Nuclear fusion within a star will result in radiation 

pressure from the emitted photons. For stars above 

about 120 solar masses, radiation pressure would be so 

extreme that gravitational stability is though to be 

unlikely. Although perhaps exceptions exist! 

So star masses (excluding Black Holes) should be 

within the range of 0.08 and about 120 solar masses.

Radiation produced from nuclear fusion in the core of a star will 

be constantly reabsorbed, so it can take a long time for these 

photons to escape. The total about of radiative power of a star 

is called its luminosity L. If the effective temperature is Te 

and the star radius is R :
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*The energy in this violent supernova process may be sufficient to 

synthesize heavier elements than iron.

Not the same as 

surface temperature!
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Stars in the Main Sequence

https://chandra.harvard.edu/edu/formal/variable_stars/bg_info.html
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Once a star has formed, i.e. nuclear fusion commences in its core, a star will typically exist in a quasi-static state

in what is known as the Main Sequence (MS) for a time   which depends on the ratio of its mass M  to its luminosity L.

https://en.wikipedia.org

/wiki/Main_sequence

#Evolutionary_tracks

If one plots a log, log graph of luminosity vs effective temperature, (this is called

A Hertzsprung Russell diagram) most stars are clustered along a diagonal line.

This is the MS. At later stages of stellar evolution, stars will ‘meander’

off the MS and branch off to giants, (or supergiants) and then possibly 

white dwarfs.(or black holes).

Henry Norris 

Russell 

(1877-1957)

Ejnar 

Hertzsprung

(1873-1967)

Hertzsprung-Russell (HR) diagram

The surface temperature of a star is

related to the wavelength of the peak of the 

spectrum of solar irradiance (i.e. the Planck 

spectrum). The latter (i.e. ‘colour’) can be 

measured for stars, and hence effective 

temperature Te can be calculated.

The MS correlation means L can be 

predicted from Te (assuming a star is 

in the MS), which means both the 

radius and the distance to the star d 

can be calculated. The latter can be 

found by measuring the radiation flux 

 (in W/m2) from a star by an Earth or 

near-Earth telescope.
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

Find star surface temperature from peak

of Planck spectrum for star.

Find distance to star if know

the luminosity and measure the 

radiation flux.

Calculate star radius from luminosity

and effective temperature. 
Note emissivity  might not be 1 for all stars..
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Approximate MS

correlation

https://en.wikipedia.org/wiki/Mass%E2%

80%93luminosity_relation
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Empirical luminosity vs star mass relationship

For MS stars, using measurements from binary star systems

Using approximate

MS correlation from HR 

diagram combined with 

empirical luminosity vs 

mass relationship

So more

massive stars

have much

shorter lifetimes

Observe effective temperature

vs mass is fairly linear

for low mass stars

8 -12.99 10 msc =  23 -11.38 10 JKBk −= 
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Newton’s law of

Gravitation.
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Gravitational force between 

mass or radius r and shell of 

width dr above it. For 

equilibrium, this must be 

balanced by gas (and 

radiation) pressure x shell 

area.

Let us model a star as a polytropic gas with pressure vs density variation

Rocky planets have a fixed density so n = 0.

Neutron stars are modelled with n between 0.5 and 1.

Red giants, brown dwarfs, gas giant planets (like Jupiter) 

and also low-mass white dwarfs have n = 1.5.

Higher mass white dwarfs and MS stars have n = 3.

n = 5 implies an infinite radius.

n = infinite implies an isothermal sphere (e.g. models a 

globular cluster of galaxies).

https://en.wikipedia.org/wiki/Polytrope

We can describe a quasi-static, spherically symmetric star using the following set of differential equations.
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Mass build up via spherical shells

Hydrostatic equilibrium between gravity

and gas (and radiation) pressure

Power per unit area of internal shell inside star

generated via nuclear fusion

 is the energy generated per unit mass via 

nuclear fusion (excluding neutrino production, 

which is assumed to leave the star and not interact 

with higher radius layers).

For low-mass, low temperature stars the pp-chain

is the primary mode of nuclear fusion

2 4

pp X T  =

For higher temperatures, the CNO cycle is possible

And for even higher temperatures the triple alpha

fusion reaction can occur

3 2 40Y T  =
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Beyond this, fusion involving carbon, oxygen and 

eventually silicon is possible. But when iron is 

produced, fusion is no longer possible in a star. To 

synthesize heavier elements you need a supernova! 

Note as T increases the fraction of net fusion energy 

carried away by neutrinos increases.

Note very strong

T dependence!

Physical properties of the interior of (Main Sequence) stars: Polytropic, ideal gas model

2 44
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Boundary conditions:

2
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M dm r dr = = 

Pressure can be modelled by the ideal gas 

equation (force per unit area results from 

random collisions between molecules) and 

radiation pressure (compressive effect

Resulting from impinging radiation, its 

reflection plus ‘black body’ radiation of the 

gas itself)
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https://vikdhillon.staff.shef.ac.uk/

teaching/phy213/phy213_molecular.html

23 27 -1 -16.0221 10 1.6726 10 kgmol 1.007 kgmolpm −=    Molar mass of a proton

Ideal gas

Radiation 

pressure

**

** The idea is to count the ionized particles per nucleon. Hydrogen 

produces two (e- + p+), Helium produces three 

( 2e- + He2+) of four and one assumes most ‘metals’ are approximately 

equal numbers of protons and neutrons.

So assuming all particles have the same KE (and hence contribute 

equally to the ideal gas pressure), the mass of this particle is the 

proton mass / number of ionized particles per proton (or neutron).
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Average molar mass of star matter

depends on hydrogen (mass) fraction (X), 

and Helium fraction (Y). The remainder 

(Z) is known as ‘metallicity’.

We often assume star interiors are fully ionized.

For the simplest model of a MS star we will assume the same

polytropic relationship thought the star, so P0 and 0 correspond to 

the core of the star at r = 0. More sophisticated models may involve distinct

radial regions, such as a helium core surrounded by hydrogen ‘burning’ shells.

We will also assume the star is an ideal gas, and we can ignore radiation pressure.
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The Lane-Emden model can be

used to determine the mass, pressure, density

and temperature variations with radius.

(See next page!)

Inputs are just

M, X,Y

, sL T from MS empirical

formulae

44 s

L
R

T
=

Assume emissivity 

 is unity

Note Te is not the 

same as surface 

temperature!

http://www.eclecticon.info/
https://en.wikipedia.org/wiki/Polytrope
https://en.wikipedia.org/wiki/Radiation_pressure
https://vikdhillon.staff.shef.ac.uk/teaching/phy213/phy213_molecular.html
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Lane-Emden model of a polytropic star

Define another set of variables
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Let’s define constant  such that:

Hence: 2

2

1 nd d

d d


 

  

 
= − 

 

This is called the 

Lane-Emden equation

https://en.wikipedia.org/wiki/

Lane%E2%80%93Emden_equation

J.H Lane, R. Emden

Some analytic solutions exist (n = 0, n = 1, n = 2 and in certain regions, n = 5),

But it can also be solved via a numeric method.

Define Therefore the Lane-Emden 

equation becomes

A first-order ‘Euler’ solution method is: 
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… Although for n = 4 or n = 5 this may result in an 

infinite loop. A practical method is to set a sensible 

upper limit such as
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Calculating mass vs radius

Neutron stars are modelled with n 

between 0.5 and 1.

Red giants, brown dwarfs, gas 

giant planets (like Jupiter) 

and also low-mass white dwarfs 

have n = 1.5.

Higher mass white dwarfs and MS 

stars have n = 3.

n = 5 implies an infinite radius.

n = infinite implies an isothermal 

sphere

If we restrict n to 3 or less

(i.e. modelling most star types) then

have a finite radius and mass. 

Some 

special 

cases:
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+  
=  

 

 +  
 =  
   

( )
( )

1

1

1 33 1
1 20 4 3

03

1

4 3

n

n

n

n n

n
a n

R M
G


 



− − −
−

−

 +  
  =  
   

This is undefined for n = 3

Radius vs mass

relationship

for a polytropic star

*

0

0

2

0

20 1
3

0 1 2 3 4 5

6 4.35 6.89 14.97

2 6 2.41 2.02 1.80 1.7

1 11.40 54.16 621.92

n

d

d


 


 










−



( )
( )

( )

1
3

1
3

2
3

2 4 2 2
3 3 3 3

2
3

1 4
3 3

3
2

1
2

3
2

3

1 3 13
1 20 4

03

3

2
1

3

2

2

3 1

4 3

2 3

2

2

4

a
M

G

a
M

G

a
M

G

a
M

G

a
M

G


 











− −

−

− + −

−

−

 +  
 =  
   

 
=    

 

 
=   

 

 
=   

 

  
 =  

 

If n = 3 then fixed mass given polytropic constant a*

This gives the Chandrasekhar mass 

limit for white dwarfs (calculate a 

from a model of degeneracy 

pressure)

Subrahmanyan 

Chandrasekhar

(1910-1995)

3
2

4
3

3
1.44

32

hc
M M

G

 
=  

 


Careful!

a may vary with M 

and R, so

not a particularly 

useful equation

in itself …

For a MS star model (ignoring radiation pressure)

• Inputs are star mass, hydrogen and helium mass fractions and polytropic index.

• Get effective temperature and luminosity from Hertzsprung-Russell MS correlations with mass.

• Find radius from luminosity and effective temperature

• Hence determine average density, and therefore core density from Lane-Emden condensation, 

given polytropic index.

• Calculate core temperature assuming ideal gas model

• Calculate radial extent and then mass enclosed and density vs radial extent from Lane-Emden.

• Calculate pressure from ideal gas and polytropic model.

• Calculate temperature using ideal gas equation.

• Then calculate luminosity and convective stability using radiative and convective transport 

models, and model of energy production (and opacity) via nuclear fusion.

Example

on next page!

http://www.eclecticon.info/
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Numeric method for calculating luminosity

Idea is to add up contributions from a set of concentric shells, then scale the final luminosity so that it equals L, which we computed from the empirical relationship.

N = length(s.r); l = zeros(1,N);

for n=1:(N-1)   

    %Shell width (in m)

dr = s.r(n+1)-s.r(n);

    %Mass of shell of width dr (in kg)

dm = 4*pi*( s.r(n)^2 )*s.rho(n)*dr;

    %Contribution to luminosity (in W) using nuclear fusion power model

    yes = fusion_yes_or_no( s.T(n), s.fusion_model);

   if yes==1;

        %Temperature is hot enough for nuclear fusion

dl = dm * ( X_H^AX )*( X_He^AY )*( (1-X_H-X_He)^AZ )*( s.rho(n)^B )*( s.T(n)^C );

    else

        dl = 0;

    end

    %Cumulatively sum luminosity

l(n+1) = l(n) + dl;

end

%Scale such that luminosity at surface is L

s.l = s.L*l/l(N);

r
24m r r  =

He metalH A AAl m X Y Z T   = 

e.g. pp:  

2, 0, 0, 1, 4H He metalA A A  = = = = =

fusion_model = 'pp';

AX = 2; AY = 0; AZ=0; B = 1; C = 4;

if ( T0>1.5e7 ) & (T0<1e8)

    %CNO cycle

    fusion_model = 'CNO';

AX = 1; AY = 0; AZ=1; B = 1; C = 17;

elseif T0>1e8

    %Triple-alpha

    fusion_model = 'Triple-alpha';

AX = 0; AY = 3; AZ=0; B = 2; C = 40;

end

2 4

pp X T  =

Model run using masses between 0.1 and 20 solar masses. 0.747, 0.236, 0.017 0.6 pX Y Z m= = =   i.e. same as the Sun.

Strange result of core temperature

dropping slightly as star mass

increases. A glitch resulting from

an imperfect MS correlation?
This demonstrates

the Lane Emden equation

results in a ‘condensation’

which is independent of

the star mass.

This is an interesting result. 

Is it realistic for low mass stars?

So we can ignore radiation pressure

for the lower mass stars, but not

for higher mass stars.

4
3

4
3

1/3 4 4/3,

rad

P
P T T

P P

  




    

  

1n nl l l+ = +

Use the same temperature thresholds

http://www.eclecticon.info/
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Luminosity, temperature gradient relationship for radiative heat transport, and opacity Convective stability

The Schwarzschild criterion for convective instability 

(i.e. convection is likely to occur) is:

Kramer’s opacity
3.5

0 T   −

2 -10.02(1 ) m kgX  +

Opacity is defined by:

1

0

r

A d

A dr

d
dr

e 








−

 
= −


 = −



  = 

i.e. fractional radiation flux (W/m2) 

scattered by matter area A and 

thickness dr, per kg 

of this matter, multiplied by area A.

Or a measure of the attenuation of 

radiation, Since when: 

If density and opacity

constant

0
0

1
, 0.37 .r

e


=  =  

Low energy limit of Compton scattering. i.e. 

electron is scattered by photon, but photon 

changed in wavelength and scattered

Occurs in cores of most stars and atmospheres 

of hot stars.

‘Bound-free’ and ‘free-free’ scattering

i.e. electron absorbs photon and is scattered.

Appropriate in low temperature, low density stars 

and radiative atmospheres.

X is Hydrogen mass

fraction of star

But what is the constant?!

The radiative flux (i.e. power per square metre) 

through a radial element of thickness dr is

( )4

2

3

2

2 3

4

4
4

16

l
d d T dr

r

ldr
T dT

r

dT l

dr r T

 









 

 = = − 

 = −

 = −

Turns out this is not quite correct, as

one should integrate over all angles.

The correct version of the Eddington

Equation for radiative transfer is:

Arthur Eddington

(1882-1944)

3
4 2 316

dT l

dr r T



 
 = −

rad ad

dT dT

dr dr


Adiabatic 

process

Radiative 

process

For an adiabatic process involving an ideal gas:

( )

1

1 1

1 1 1

( ) 0

( ) 0 1 0

1 1

1

d PV

T
V PV P T

P

d PV P T dT T P dP

T P dP
dT dP

P T PT

dT T dP

dr P dr



  

    

 

 

 

 

 





−

− − −

−

− − −

=

  

 =  + − =

− −
 = =

−
 =

T
V

P


5
3

p

v

c

c
 = =

for a fully ionized ideal gas

i.e. no heat is transferred

So convection in a star possible if: 

3
4 2 3

1

16

l T dP

r T P dr

 

  

−


Models of opacity 

Note we know

T and P vs r from Lane-Emden

Model so we can compute

the temperature gradient

2 3

4
3

16 r T dT

l dr

 



= −

i.e. assuming temperature

gradient is only due to radiative 

transport. This is thought not to be

a good model near the star radius.

From Pettini’s lecture notes (a more modern Stars course!):

This simulation

appears inconsistent

with current theories.

Low mass stars are 

predicted

to be mostly convective.

This simulation suggests convection only

near the star radius. 

This figure is from by Uni notes from the 

Cambridge Part III Structure and Evolution 

of Stars course.

But if ionization is partial then 1 →

http://www.eclecticon.info/
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Gradients of HR diagram suggested by 

homology relationships. The sun is at (0,0).

Hertzsprung-Russell diagram, with star data colour coded by colour index for star

%Calculate star effective temperature (K) 

using 

Ballesteros' formula

%https://en.wikipedia.org/wiki/Color_index

%Set colour index to have max and min values 

Which matches the blue to red colour scale

B_minus_V = stars.colour_index_B_minus_V;

B_minus_V( B_minus_V > 1.4) = 1.4;

B_minus_V( B_minus_V < -0.33) = -0.33;

1 1
4600K

0.92( ) 1.7 0.92( ) 0.62
T

B V B V

 
=  + 

− + − + 

Main Sequence

Giants

Supergiants

White dwarfs

Let’s run the Lane-Emden model for the Sun, to enable the core temperature to be estimated.

30

26 -1

1.989 10 kg

696,340km

3.846 10 Js

5778K

M

R

L

T

= 

=

= 

=









3

0 0

3 3 3 34 4
0 03 3

3

0 0

4 3

3

M

R

  


   

 



 
 = = =

 =


0

2

0

d

d






 = −

3

0
4M  = 

0.747, 0.236, 0.017

0.6 p

X Y Z

m

= = =

 

( )0

0

2

0

0

2

0
0

0 34
3

2

0 34
3

2

0 34
3

0 2

6.89
6.89

3 1

4

4

4 6.89

6.89

53.95

53.95
6.89

53.95
6.89

3 53.95

4 6.89

B

B

B

B

B

R
R

RT

G

Rk T

G

RG
T

k

M

R

R MG
T

k R

R MG
T

k R

GM
T

k R

 


 

 

 




 



 





=  =

+
=

 
 =  

 

 
 =  

 

=

 
 =  

 

 
 =  

 

 
 =  

 























71.18 10 K 

0R =

Assuming ideal gas in core

Stars chosen for the simulations

described are indicated by the magenta stars

Official solar model suggests

onset of convection is about 0.7

solar radii.

But if ionization is partial then 1 →

See later!
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Let’s assume radiation-dominated heat transport, 

but where radiation pressure can be ignored.

Boundary conditions are:

Idea is to guess initial conditions in order to

arrive at the boundary conditions which match

observables such as:

30

26 -1

1.989 10 kg

696,340km

3.846 10 Js

5778K

M

R

L

T

= 

=

= 

=









Initial conditions to guess are:

0 0 0, , ,T   

Might be able to reduce the number?

For continuity of opacity, assuming low energy 

Compton scattering occurs in the cores of most stars:

3.5

0 0 0

0 3.5

0 0

0.02(1 )

0.02(1 )

X T

X

T

 




−

−

+ 

+
 =

Idea is to work backwards from the 

surface, and simultaneously from core to 

surface, changing the parameters until 

the solutions converge. This is the 

method developed by M. Schwarzchild in 

1958.

… or could assign

at a lower T beyond the

core?

A sensible pre-solver step is to scale the 

equations, so the coupled non-linear 

differential equations are in terms of 

dimensionless variables
2

34
3

2 2

2

1

4

1 1

4

3

dr

dm r

R Rdr

MM dx r R M

dr M

dx r

 



 



=

 =

 =



 34
3

34
3

,

dl
T

dm

L Mdl
T T

MM dx R

M Mdl
M T T

dx L R

 



  



  






 


=

 
 =  

 

 
 =   =  

 











34
3

,

, , ,

x m M M MM m xMM

M
l lL T TT r rR

R
 



= →  →

→ → → →








Radiative high T

Convective (adiabatic) energy transport

0 1x  and fix M for a given solver.

Radiative low T

0, 0y z= =

1, 3.5y z= =
0

2 4 3

0

2 4 3 3 4 34
3

0

4 3 2 3 4 44
3

3

256

3

256

3
,

256

y z

y
y z

z

y
y

z z

T ldT

dm r T

T M Ll TdT
T

MM dx r T R R T

M L MdT Ml

dx r T R R T

 

 

 

  



  

−

−
−

+ +

= −

 
 = −  

 

 
 = −  =  

 










0

y zT   −=

Radiative energy transport

Mass in shells Energy generation by nuclear fusion

Hydrostatic equilibrium

Star structure equations in Lagrangian coordinates  

(i.e. in terms of m)

2

4

1

4

4

dr

dm r

dP dP dr Gm

dm dr dm r

dl dl dr

dm dr dm

 





=

=  = −

=  =

2

2 4 3

4

4

3

4

3

4

2

4

1

4

3

256

4
,

3 4

16

3 4

16

4 3

16

4 3

B

B B

B

B

B B

dr

dm r

dl
T

dm

dT l

dm r T

k T dP Gm
P T

c dm r

k T kd dT dT Gm
T

dm dm c dm r

kd Gm dT
T

dm k T r RT dm c

d Gm dT
T

dm k T r dm T k c

 

 

 



 

 

 

 

  

   

 

   



=

= =

= −

= + = −

 + + = −

 
 = − − + 

 

 
 = − − + 

 

2 4

, ,

( ) 4

s

e

m M r R T T

L l M R T 

= = =

= =

1
4 4

1
4 4 4

34
3

2

4

1
1

1 1
1

1
, 1

3

B

B

B

dT Gm

dm k r

T MMdT Gx

MMM dx k r R

R

MdT M x G

dx r k R T







 



 





 

 
= − − 

 

 
 = − − 

 

 
 = −  = − 

 











2

4

34
2 23

4 4 34
3

3

3 24
3 4 4 34

3

16

4 3

16

4 3

161 1

4 3

B

B B

B B

d Gm dT
T

dm RT r dm T k c

M

R GxMM T Md dT
T T

MM dx k TT r R MM dx R T T k c

GM Td xM dT
M R T

dx k T R r T M dx R T k cM

   



    

 

  


 

 
= − − + 

 

 
 = − − + 

 

    
 = − + +    

   













3 32 4
23

4

2
2

4

3 3

3 16

3

3 64
,

9

B B

B B

GM R Td xM dT
T

dx k T R r T dx T k cM

d xM dT
T

dx r T dx T

GM R T

k T R k cM

   

 
 

 
 





     
 = − + +    

     

 
 = − − + 

 

= =









This is what

we did in the

Lane Emden model

2 1

4 3 4 3

rad ad rad ad

y y

z z

dT dT dT dx dT dx

dr dr dx dr dx dr

Ml M x l
Mx

r T r T

 



+

+ +

  

       

The Schwarzschild criterion for 

convective instability (i.e. convection is 

likely to occur) is:
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2
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4

1

1

2
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4

log log log

log log log 4 4

( log ) log ( log ) 2 1 2

e s

A BA

x x
e B

x x

x
e

x

x

e e

L
L R T T

R

l M l
T M

r M r

l A B
T M

r

L l A M

d L d L d M A

d T d M d T A B B A

−

= =

= =

=

=

=

 
=  =  

 

   
 = =   

   

  − 
− = − −   

  

= +

−
 =  = − =

− − − −
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A homological approach 

Let’s further scale our (now dimensionless) variables l, r, T, 

to be further scaled by powers of M. Can we write each equation

of stellar structure in such a way that they are independent of M
and hence appropriate for all stars (in the Main Sequence) ?

, , ,A B C Dl M l r M r T M T M → → → →

2

2

2

2

3

3

1

3

1 2

3 1

B B D

dr M

dx r

dr M
M M

dx r

dr

dx r

B B D

B D







− −

=

 =

 =

 = − −

 + =

Ignore this extra constraint if can ignore radiation pressure.

Otherwise this may invalidate the homology argument.

34
3

,

1

1

A D C

M Mdl
M T T

dx L R

dl
M M T M

dx

dl
T

dx

A D C

A D C



  

   

 

 






 

 

+

 
=   =  

 

 = 

 = 

 = + +

 − − =






2
2

4

3 3

2
4 2 2

4

2

4

3 64
,

9

2 4 4 2

AND 3

D B C C D C C

d xM dT
T

dx r T dx T

GM R T

RT R RcM

d xM dT
M M M M M T

dx r T dx T

d x dT
T

dx r T dx T

D B C D B C

D C

 
 

 
 

 
 

  


− − −

 
= − − + 

 

= =

 
 = − − + 

 

 
 = − − + 

 

 = − −  + + =

=





2

4

2
4

4

4

1
, 1

3

2 4

4 2

C D B

MdT M x G

dx r R R T

dT M x
M M

dx r

dT x

dx r

C D B

C D B



 





− −

 
 −  = − 

 

  −


  −

 = − −

 + + =





pp:   1, 4 = =

CNO: 

0

4 3 2 3 4 34
3

( 3) 4

4 3

4 3

3
,

256

1 ( 3) 4

4 ( 4) 1

y
y

z z

y
C A yD z C B

z

y

z

M L MdT Ml

dx r T R R T

dT Ml
M M

dx r T

dT l

dx r T

C A yD z C B

A B z C yD



  





+ +

+ − + −

+

+

 
= −  =  

 

 = −


 = −

 = + + − + −

 − + + + − =





1

0 3 0 1 1

1 0 1

0 4 1 1 2

1 4 4 1

0 3 0 1 1

1 0 1

0 4 1 1 2

1 4 4 1

A

B

C

z y D

A

B

C

D z y

 

 

−

    
    

− −
     =
    
    

− + −    

     
     

− −      =
     
     

− + −     

Radiative

1 

Triple-alpha: 2, 40 = =

Radiative high T

Radiative low T

0, 0y z= =

1, 3.5y z= =

This yields the same 

equation for powers of M as 

the density equation, so this

is consistent with our

homological approach.

Non-

convective 

criterion

Applying homology relations :

Low mass, low temperature star. pp chain fusion.

High mass, high temperature star. CNO fusion.

High mass, higher temperature star. Triple alpha fusion.

1, 4, 1, 3.5y z = = = =

2, 40, 0, 0y z = = = =

5.5 0.077 0.92 0.77

0 0, , ,L M R M T M M   

3 0.8 0.2 1.4

0 0, , ,L M R M T M M −   

3 0.87 0.13 1.6

0 0, , ,L M R M T M M −   

We can now predict the 

gradients of the HR diagram!

Kramer’s opacity

Use (sun scaled) luminosity vs radius and 

effective temperature relationship:

HR diagram 

predicted

gradient

Use a computer programme

to invert this matrix e.g.

MATLAB.

4.1 pp
log

8.6 CNO
( log )

9.5 Tripleα
e

d L

d T

−


 −
− −

L
L

L
→



e.g

1, 17 = =

1, 17, 0, 0y z = = = =

1 1

1 1

, ,

log log log , log log log

A B

x x

x x

L l M R r M

L l A M R r B M

= =

= =

= =

= + = +
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Arthur Eddington

(1882-1944)

Eddington stellar model

In the Eddington model, define a parameter which sets the 

ratio between gas and radiation + gas pressure, and assume

this is a constant throughout the star.

( )

1
3

1
3

4

(1 )

4
(1 )

3

3 1

4

g g r g r

B

B

P P P P P P

k T
T

c

k c
T

   

 
 






 

= = +  − =

 − =

 −
 =  

 

44

3

Bk T
P T

c

 


= +

Ideal gas

Radiation 

pressure

1
3

1
3

1
3

1
3

1
3

1
3

4
1

4 4

3 1

4

,

3 1

4

3 1

4

B

g B
g

B B

B

k c
T

P k T
P P

k k c
P

k c
P




 



 

 


  




 

+

 −
=  

 

= =

 −
 =  

 

 −
 =  

 
i.e. a polytrope of order three

( )
( )

1
3

1
3

3

1 3 13
1 20 4

03

3 1

4 3

a
M

G


 



− −

−
 +  
  =  
   

For polytrope:
1
3

1
P a

+
=

using Lane-Emden model

for n = 3 polytropes

0 6.90

2.02

 =

 =

1
3

4

3 1

4

Bk c
a



 

 −
 =  

 

( )
( )

( )

1
3

1
3

1
3

3
2

12 1
33 2

3
1 2
3

2 2 1 2 4 2 2
3 3 3 3 3 3 3

3

1 3 13
1 20 4

03

4

4

2
344 3

3 20

04 4

4
1

4 3 4

3 1

4 3

3 1

4

3 1

4 3

1
3 2

B

B

B

a
M

G

k c
a

k c
M

G

k c
M

G


 





 

  


  




 

− −

−

−

− − + + −

 +  
 =  
   

 −
=  

 

 
    −  =            

 

    −
  =    
   

1
2

3
1 12
3 2

1 1 2 2
3 3 3 3

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

4

4 3 4

4

4 3 4

4

4 3 4

2 4

12

3 4 2 4

1
3 2

1
3 2

1
3 2

1

B

B

B

B

k c
M

G

k c
M

G

k c
M

G

k cM

M G M





 




 




 



  

−

−

−


 
 

    −
  =      
     

    −
  =      
    

    −
  =      
    

  −
 = 



1
2

1
2

2 4

18.0 1

p

M

M

m








 −
   

   
  
 



Note if one knows the star mass then this yields 

Eddington’s Quartic for the fraction  of total pressure 

that is gas pressure

But setting  to zero doesn’t 

yield a finite upper limit for star 

mass, as this would imply an 

infinite mass. 

0.747, 0.236

0.6 p

X Y

m

= =

 

Solar parameters

3 4

12

3 4 2

2

4 0

B
k c

G M

M

M




 

  


=

 
 + − =  

 





30

23 -1

11 3 -1 -2

8 -2 -4

27

8 -1

1.988 10 kg

1.381 10 JK

6.674 10 m kg s

5.670 10 Wm K

1.673 10 kg

2.998 10 ms

B

p

M

k

G

m

c



−

−

−

−

= 

= 

= 

= 

= 

= 



4

6 2pm X Y


=

+ +

0.9996

M M



=

=



So radiation pressure not so important for stars 

of small multiples of solar masses.

Solve using a numeric root-finding method

4

6 2pm X Y


=

+ +

Ideal gas 
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Eddington limit for star mass: When radiation pressure balances gravitational attraction

Lower limit for (main sequence) star mass

Sun core temperature 
7

0 1.5 10 KT = 

Minimum temperature for nuclear reactions (pp chain) to occur

6

min 4 10 KT  

From homology argument, core temperature scales with mass

(for low temperature stars undergoing pp chain fusion)
0.92

0T M

Hence:

( )
1

0.92

0.92

min min 4
min 15

0

0.2
T M

M M M
T M

 
    

 




According to Pettini’s notes (Lecture10), the limit is more 

like 0.08 solar masses. Wolf359 is a red dwarf in the 

constellation of Leo and is calculated to have a mass of 

0.09 solar masses.

Note if use constant opacity:
0.57

0T M

( )
1

0.574
min 15

0.1M M M  

2 3

4

2

3

64

4

3

dT l

dr r T

P T
c

dP Gm

dr r



 





 −

=

= −

2 -10.02(1 ) m kgX  +Radiative energy transport.  For hot stars, assume constant opacity

If radiation pressure 

dominates

Hydrogen mass fraction

Hydrostatic equilibrium

From homology, for the most luminous stars

3

3 3

2 3

2

2 2

2

2

max
max

16

3

16 16 3

3 3 64

4

4

4 4

4

dP dP dT

dr dT dr

dP
T

dT c

dP dT l
T T

dr c dr c r T

dP l

dr r c

l Gm

r c r

Gm r c cGm
l

r

cGM
L



  

 





 



  

 





 = 

=

 =  = −

 = −

 =

 = =

 =

30

26 -1

1.989 10 kg

696,340km

3.846 10 Js

5778K

M

R

L

T

= 

=

= 

=









3 -111 -1 -1-2m kg s6.674 10 8.314Jmol KG R−=  = 8 2 45.67 10 Wm K − − −= 

3

3

max
max

3

max max

3

max

8 11 30

max 26

max

4

4 4

4 3.00 10 6.67 10 1.99 10

0.02 (1 0.7) 3.846 10

190

L M

L M

M
L L

M

cGM M
L

M

cGM cGM
M M

L L

M M

M M





 

 

 −

 
  

 

 
 =  

 

 
 =  

 

 = =

     
 =

 +  

 




















This is actually a bit of an overestimate. A better estimate is 100 to 120 solar 

masses. For the hottest stars, electron scattering is not the only source of 

opacity. The effects of incomplete ionization in the atmospheres of the hottest 

stars increases the opacity, which in the simple model of constant opacity used 

above, means the maximum star mass should decrease. We would also need 

to model the effect of varying Y and Z values too on the opacity

model, since at high temperature, scattering resulting from bound-bound 

transitions in non-hydrogen atoms might contribute to higher opacity. 

(Pettini Lecture 10).

guess that H abundance is 70%

i.e. similar to the Sun

( )

( )

( )

2.3

4

3.5

0.23 0.43

0.43 2

1.4 2 55

32,000 55

M M M M

L M M M M

L M M M M

M M M M

 

  

 
  













Arthur Eddington

(1882-1944)

Line of best 

fit yields
3

5.78
L M

L M

 
  

 

Empirical luminosity vs mass relationships

from binary star observations
Consistent!
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The gravitational potential energy (GPE) of a polytropic star

( )

2

0

34
334

3

34
30

2

44
334 0

3

2

54 1
3 534

3

2

3
5

4 4

constant

,;

4

4

4

R

R

R

Gm
dU r dr U G mr dr

r

M
m r

R

U G r r dr

M
U G r dr

R

M
U G R

R

GM
U

R

   



  


   

 


 


= −   = −

=

 = =

 = −

 
 = −  

 

 
 = −  

 

 = −







Firstly calculate the GPE of a spherical mass of constant density

(this is a polytropic index n of zero)

It can be shown that this is a special case of the 

more general Betti-Ritter formula for a 

polytropic star of polytropic index n 23

5

GM
U

n R
= −

−

0n =

( )

1 1

1 1

1 1

11

1

1

n n

n n

n

dP n
P a a d

n

P P
a d a d

dP P
n d

  


  
 

 

+ −

−

+ 
=  =  

 

 
=  = 

 

 
 = +  

 

2

1
20 0

2 2 2 2 2 2

2 2

2 2 2 2

1 1 1
2 2 22 20 0

R R

R R

Gmdm dm
U G

r r

m rdm m dr dm m m
d d dr

r r r r r

m m GM Gm
U G d dr dr

r r R r

= − = −

   −
=  = +   

   

  
 = − + = − −  

  

 

 

Hydrostatic equilibrium

Consider polytropic pressure vs density variation:

Hence:

Integrating by parts:

Hence:

2

2

2

1 1
2 2 0

R

dP Gm

dr r

Gm dP

r

GM m
U dP

R







= −

− =

 = − + 

Build up GPE by assembling 

shells of mass dm

2

1 1
2 2 0

( 1)
RGM P

U n md
R 

 
= − + +  

 


0 0
0

R
R RP P P

md m dm
  

   
= −   

   
 

Assume pressure tends to zero at the surface

of the star, and the mass enclosed is

definitely zero at the centre of the star.

0

0 0

0

R

R R

P
m

P P
md dm



 

 
= 

 

 
 = − 

 
 

Shell volume element 
dm

dV


=

0 0 0

R R RP P
md dm PdV

 

 
 = − = − 

 
  

0 0 0

( )

( )
R R R

d PV PdV VdP

d PV PdV VdP

= +

 = +  

If pressure is zero at star surface

and enclosed volume is zero at the

centre of the star:

Now

0
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R
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Note we have not needed to invoke any ideal gas assumptions! For an isothermal

change involving an ideal gas:
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0 0 0
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R R R

d PV PdV VdP=  − =  So

Hence:

( )

2

1 1
2 2 0

2

1 1
2 2 0

2

1 1
2 2 0

2
31 1 4

2 2 3 20

2
21 1

2 6 0

2

1 1
2 6 0

2

1 1
2 6

1 1
6 6

( 1)

( 1)

( 1)

( 1)

( 1) 4

( 1)

( 1)

1

R

R

R

R

R

R

GM P
U n md

R

GM
U n PdV

R

GM
U n VdP

R

GM Gm
U n r dr

R r

GM Gm
U n r dr

R r

GM Gmdm
U n

R r

GM
U n U

R

U n






 

 
= − + +  

 

= − − +

= − + +

− 
= − + +  

 

= − + + − 

= − − +

= − + +

− − =













( )

2

1
2

2

2

6 1 3

3

5

GM

R

GM
U n

R

GM
U

n R

−

− − = −

 = −
−

2

dP Gm

dr r


= −

34
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Proof of Betti-Ritter formula

Virial theorem states that force between

any two particles results from a potential

of the form 

k
V

r
= then 

( )
2

2

KE PE

KE PE 1 PEE E





= −

= +  = −

E is total energy

Note we could use

this to find the total energy

0

R Gmdm
U

r
= −

0
( ) 0

R

d PV =
Integrand zero throughout

in this case, not just integral 

at limits
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Degeneracy pressure and the Chandrasekhar limit for the mass of white dwarf stars

Subrahmanyan 

Chandrasekhar

(1910-1995)

https://en.wikipedia.org/wiki/Chandrasekhar%27s_white_dwarf_equation

A Main Sequence star of mass less than about 8 solar masses will eventually swell to 

a red giant and eventually dissipate, leaving a white dwarf and ultimately a black 

dwarf. Unless the red giant forms a binary with a white dwarf and transfers mass 

such that the white dwarf exceed 1.44 solar masses. This results in a Type 1a 

supernova, with no remnant.

Let’s firstly explore this limit using the Lane-Emden equation. It can be shown that the 

more massive white dwarf stars can be modelled by polytropes of index n = 3 (i.e. just like 

MS stars). Lane-Emden suggests a condensation of 53.95 for these types of stars.

0

0

2
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20 1
3

0 1 2 3 4 5

6 4.35 6.89 14.93

2 6 2.41 2.02 1.80 1.7

1 11.37 53.95 617.50
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



−



Let’s assume a maximum core density such that the ‘nuclei are (almost) touching.’

This means a minimum spacing of about x = 10-15 m, but it could be rather more than this

for the potential for runaway carbon fusion.
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Lane-Emden predicts the following formula for the star mass

4
2
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p

p

m
m

X Y
 = 

+ +

Assuming white dwarfs are mostly carbon and oxygen

X,Y = 0 meaning average molecular mass per electron is:

Let’s assume a white dwarf explodes when the core

temperature is high enough for carbon fusion, i.e.
8
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0
4M  = 

Assuming carbon atoms are in a white dwarf, 

what is their spacing x in the core?
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This is two orders of magnitude smaller than atomic size, but about 300 proton radii

This is about 10x larger than the ‘official’ values

This is about 10x smaller than the ‘official’ values
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So we can get sensible numbers

for carbon nuclei spacing, white dwarf

radius and density (see more accurate

calculations on the next few pages)

Using 1.4M M= 

For a fixed star mass, given

Lane-Emden model and 

Assuming an ideal gas.

But this assumes an ideal gas at the core …

This is perhaps not a good model for

white dwarfs near the Chandrasekhar

limit, as electron degeneracy pressure

will become the dominant factor which

resists gravitational collapse.

i.e. let’s try a slightly higher temperature!

Derivation of the Chandrasekhar limit will firstly require a model of degeneracy pressure

Although a white dwarf is no longer hot enough for fusion to occur, assume its constituent (probably carbon and 

oxygen) atoms are hot enough for electrons to be ionized. We shall model a white dwarf as being a sphere 

of mass M and radius R with a ‘sea’ of free electrons occupying the space between the nuclei.

Consider a cube of side length L of this ‘electron sea.’ Let’s assume the wavefunction of electrons

has a de-Broglie wavelength such that whole number multiples equal L

, 1,2,3...x x xL n n = =

Using the de-Broglie relationship: x xp h = hence
1

x xL
p n h=

The number of momentum states between xp and x xp dp+ is
x

x

Ldp
dn

h
=

Generalizing to 3D: 

3 3
2

3 3
4

x y z

x y z

L dp dp dp L
dn dn dn p dp

h h
= =

2 2 2

x y zp p p p= + +

i.e. a shell

in momentum 

space

346.626 10 Jsh −= 

Planck’s constant
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Let’s assume the maximum momentum in the electron system is pF

(we’ll call this the Fermi momentum), this means the total 

electron density is

If the electrons are moving at speed v, we can 

calculate the pressure P resulting from the rate of 

change of momentum of electrons. i.e. consider a tube 

of 1m2 cross section of length v, with momentum p, 

and vn(p)dp electrons with this momentum
1
30

( )
Fp

P pvn p dp = 
Note the factor of 1/3 to average over

x,y,z directions, since, by Cartesian to spherical polar conversion

21 1
3 3

( ) 4x x y y z z x y zp v p v p v dp dp dp pv p dp+ + =  

As a white dwarf increases in mass, we might

expect it to get hotter and therefore the electrons to move

faster. Eventually they will reach relativistic speeds, which

has a limit of the speed of light.

In this limit:

( )

2 3

3 30 0

1/3 1/331
2

8 8
( )

3

F Fp p

e F

F e

n n p dp p dp p
h h

p n h


 
= = =

 =

 

( )( )
( )

2

1 1
3 3 30 0

3 4 4

3 3 30

4
1/3 1/331

23

1/3 4/331
8

8
( )

8 8 2

3 12 3

2

3

F F

F

p p

p

F F

e

e

p
P pcn p dp pc dp

h

c c c
p dp p p

h h h

c
n h

h

P hcn







  



→ =

= = =

=

 =

 



We can therefore express this electron degeneracy pressure 

in terms of white dwarf density:
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If the mass per electron ionized is

i.e. polytrope of n = 3/2

i.e. polytrope of n = 3


2 pm 

for a mostly C,O

composition

Now electrons are fermions, which means a maximum of two

electrons can share the same momentum state in one region of space,

as long as their spins are opposite. This is the Pauli Exclusion Principle.

Wolfgang Pauli

(1900-1958)

Hence the (maximum) number density of 

momentum states is:
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Enrico Fermi

(1901-1954)

In the 

non-relativistic limit:
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then white dwarf density
en =

ev p m=

Recall the Lane-Emden 

results for a polytropic star
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This is undefined for n = 3

For classical limit, 

using n = 3/2 

(see next page!)
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So a white dwarf approaching the 

Chandrasekhar limit is about the 

size of the Earth (6371 km).
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A strange result! 

The more massive a white 

dwarf is, the smaller it gets!

Radius vs mass

relationship

for a polytropic star
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So the product of a white dwarf 

volume and mass is a constant.
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For the relativistic case (n=3)
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Which is the Chandrasekhar Limit. If a 

white dwarf’s mass exceeds this, then 

runaway carbon fusion will result in a 

Type1A supernova, with no remnant!

Returning to the classical limit:
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Betti-Ritter formula (assuming KE contribution is 

degeneracy (1/3) pressure x volume)
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Looking at the Chandrasekhar limit from an energy perspective

************************************************************************************

Chandrasekhar mass = 1.4366 solar masses.

 White dwarf radius R (in km) = ( 7762.3281 km )* (M/M_ch)^(-1/3)

 White dwarf density at core assuming classical n=3/2 model: 8.73e+09 kg/m^3

 White dwarf density at core assuming relativistic n=3 model: 7.9e+10 kg/m^3

 White dwarf mass in solar masses x white dwarf volume in Earth volumes 2.598

************************************************************************************

MATLAB code outputs

Lane-Emden results

To keep thing simple, we’ll assume a constant density, rather than use the Lane-Emden results.
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Relativistic energy expression 

has no minima, and negative 

when Br > Ar. We can interpret this 

as the Chandrasekhar mass limit.

Non-relativistic limit has an energy minima at:

3 2 3 2

2 2 2
0 0c c c c c

c

A B A B AdE
R

dr R R R R B
=  − + =  =  =

( )

( )

( )

4
3

4
3

2
3

3
34 2
23

4
3

1/3 23 3 31 4
2 8 3 24/3 4

3

1/3
3 31 4
2 8 3 4/33 4

2 3

1/3
3 31 4
2 8 3 4/33 4

2 3

1

1 3
0.154

2048

r r

hc M
A B GM

hc
M

G

hc hc
M M

G G








 


 


   

 
=  = 

 

 
 = 

 

    
  = =          



i.e. an 

underestimate 

from 1.44

solar masses.
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Perhaps a better

approximation is to use

3
2

PV
than just PV as in Pettini.
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Classical limit of total energy expression:

This is a factor of 1.7 out compared to the Lane-Emden result
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For energy method

Chandrasekhar mass 

estimate is:

which is 9.4 x smaller than 

1.44 solar masses, which is the correct value.
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