Conditional Probability, Bayes' Theorem and Inference

Consider two events A and B. Each can either occur or not occur. Event A not occurring is denoted by A^{\prime} and B not occurring is denoted by B^{\prime}. We can construct TWO tree diagrams to map out the possible permutations of outcomes. The probability of A occurring given B has occurred is $P(A \mid B)$. Events A and B occurring is $P(A \& B)$.
Note the order does not matter for the latter.

$$
\begin{aligned}
& P(A \& B)=P(B \& A) \\
& P(A) P(B \mid A)=P(B) P(A \mid B) \\
& P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)} \\
& P(B \mid A)=\frac{P(B) P(A \mid B)}{P(B) P(A \mid B)+P\left(B^{\prime}\right) P\left(A \mid B^{\prime}\right)} \\
& P(B \mid A)=\frac{1}{1+\frac{P\left(B^{\prime}\right) P\left(A \mid B^{\prime}\right)}{P(B) P(A \mid B)}}
\end{aligned}
$$

Thomas Bayes 1701-1761

Probability of hypothesis true given pass of test $\mathrm{P}(\mathrm{H} \mid \mathrm{T})=$
0.161

Probability of hypothesis false given pass of test $\mathrm{P}\left(\mathrm{H}^{\prime} \mid \mathrm{T}\right)=$
0.839 (False positive)

BAYES-O-METER
A. French. February 2014

Conditional probability examples

$P(A \mid B)=1 / 3, P(A)=1 / 4$ and $P(B)=1 / 5$: Find all the other probabilities in both tree diagrams corresponding to events A and B.

$$
\begin{array}{ll}
\frac{1}{4} P(B \mid A)=\left(\frac{1}{5}\right)\left(\frac{1}{3}\right) & \frac{3}{4} P\left(B \mid A^{\prime}\right)=\left(\frac{1}{5}\right)\left(\frac{2}{3}\right) \\
\therefore & P(B \mid A)=\frac{4}{15} \\
\therefore & \therefore P\left(B^{\prime} \mid A\right)=\frac{11}{15}
\end{array}
$$

$$
\begin{aligned}
& \frac{4}{5} P\left(A \mid B^{\prime}\right)=\left(\frac{1}{4}\right) P\left(B^{\prime} \mid A\right)=\left(\frac{1}{4}\right)\left(\frac{11}{15}\right) \\
& \therefore P\left(A \mid B^{\prime}\right)=\frac{11}{48} \\
& \therefore P\left(B^{\prime} \mid A\right)=\frac{11}{15} \quad \text { Check! }
\end{aligned}
$$

Adapted from The Signal and the Noise by Nate Silver p247.
In this example H means "Terrorist attack", T means "planes crash into the World Trade Center"

PRIOR PROBABILITY

Initial estimate of how likely it is that terrorists would crash planes into Manhattan skyscrapers
$\mathrm{P}(\mathrm{H})$
0.005\%

A NEW EVENT OCCURS: FIRST PLANE HITS WORLD TRADE CENTER
Probability of plane hitting if terrorists are attacking Manhattan skyscrapers
Probability of plane hitting if terrorists are not attacking Manhattan skyscrapers (i.e. an accident)

POSTERIOR PROBABILITY

Revised estimate of probability of terror attack, given first plane hitting World Trade Center
$\mathrm{P}(\mathrm{H} \mid \mathrm{T})$ 38\%

Infamous criminal cases where convictions (or
acquittals) have been made despite criticisms about the use of probability to justify the legal arguments ("The Prosecutors' Fallacy")

Sally Clark (1998) - Accused of murdering her two children rather than both dying of Sudden Infant Death Syndrome (SIDS).
O.J. Simpson (1994) - Accused of murdering his wife.

But then probability of terror attack, given second plane hitting the World Trade Center is 99.99\% since we re-do the analysis but set $\mathrm{P}(\mathrm{H})=38 \%$

Bayes' Theorem and Venn diagrams

$$
\begin{aligned}
& P(A)=\frac{5}{10}=\frac{1}{2} \\
& P(B)=\frac{7}{10} \\
& P(B \mid A)=\frac{3}{5} \\
& P(A \mid B)=\frac{3}{7} \\
& P(A \& B)=P(A \cap B)=\frac{3}{10} \\
& P(A \text { or } B)=P(A \cup B)=\frac{9}{10} \\
& P(A) P(B \mid A)=\frac{1}{2} \times \frac{3}{5}=\frac{3}{10} \\
& P(B) P(A \mid B)=\frac{7}{10} \times \frac{3}{7}=\frac{3}{10}
\end{aligned}
$$

.e. Bayes's Theorem holds
$P(A) P(B \mid A)=P(B) P(A \mid B)$

Proof of Bayes' Theorem using Venn diagrams
$P(A)=\frac{x+a}{a+x+b+c}$
$P(B)=\frac{x+b}{a+x+b+c}$
$P(B \mid A)=\frac{x}{x+a}$
$P(A \mid B)=\frac{x}{x+b}$
$P(A \& B)=P(A \cap B)=\frac{x}{a+x+b+c}$
$P(A$ or $B)=P(A \cup B)=\frac{a+x+b}{a+x+b+c}$
$P(A) P(B \mid A)=\frac{x+a}{a+x+b+c} \times \frac{x}{x+a}=\frac{x}{a+x+b+c}$ $P(B) P(A \mid B)=\frac{x+b}{a+x+b+c} \times \frac{x}{x+b}=\frac{x}{a+x+b+c}$

$$
P(A) P(B \mid A)=P(B) P(A \mid B)
$$

Note

$n(\varepsilon)=a+x+b+c$
$n(A)=a+x$
$n(B)=b+x$
$n\left(A \cap B^{\prime}\right)=a$
$n\left(B \cap A^{\prime}\right)=b$

Inverse function of Bayesian Inference Formula

Determine the test probability of success $\mathrm{P}(\mathrm{T} \mid \mathrm{H})$ as a function of $x=P(H \mid T)$.

Assume symmetry i.e. $\mathrm{P}\left(\mathrm{T} \mid \mathrm{H}^{\prime}\right)=1-\mathrm{P}(\mathrm{T} \mid \mathrm{H})$

$$
P(H \mid T)=\frac{1}{1+\frac{P\left(H^{\prime}\right) P\left(T \mid H^{\prime}\right)}{P(H) P(T \mid H)}}
$$

$$
\begin{aligned}
& p=P(T \mid H) \\
& 1-p=P\left(T \mid H^{\prime}\right) \\
& \alpha=P(H) \\
& 1-\alpha=P\left(H^{\prime}\right) \\
& x=P(H \mid T)
\end{aligned}
$$

Hence for the disease example above, the test needs to be 99.888% accurate to yield $\mathrm{P}(\mathrm{H} \mid \mathrm{T})=90 \%$

$$
x=0.9
$$

$$
\alpha=0.01
$$

$$
\begin{aligned}
& \therefore p=\frac{x(1-\alpha)}{\alpha+x(1-2 \alpha)} \\
& p=\frac{0.9 \times 0.99}{0.01+0.9 \times 0.98} \approx 0.99888
\end{aligned}
$$

$$
P(H \mid T)=\frac{1}{1+\frac{(1-P(H))(1-P(T \mid H))}{P(H) P(T \mid H)}} \longrightarrow
$$

$$
p=P(T \mid H)
$$

Assume symmetry i.e

$$
\alpha=P(H)
$$

$$
P\left(T \mid H^{\prime}\right)=1-P(T \mid H)
$$

$$
x=P(H \mid T)
$$

$$
\begin{aligned}
& x=\frac{1}{1+\frac{(1-\alpha)(1-p)}{\alpha p}} \\
& 1+\frac{(1-\alpha)(1-p)}{\alpha p}=\frac{1}{x} \\
& \frac{(1-\alpha)(1-p)}{\alpha p}=\frac{1}{x}-1=\frac{1-x}{x} \\
& (1-\alpha)(1-p)=\left(\frac{1-x}{x}\right) \alpha p \\
& 1-\alpha=\frac{p\left\{\left(\frac{1-x}{x}\right) \alpha+1-\alpha\right\}}{\left(\frac{1-x}{x}\right) \alpha+1-\alpha} \\
& p=\frac{1-\alpha}{\alpha\left\{\frac{1-x}{x}-1\right\}+1} \\
& p=\frac{1-\alpha}{\alpha} \frac{1-\alpha}{x}-2 \alpha+1 \\
& p=\frac{x(1-\alpha)}{\alpha+x(1-2 \alpha)} \\
& p=
\end{aligned}
$$

Bayesian Inference $\mathrm{P}(\mathrm{H} \mid \mathrm{T})$

