
Conditional Probability, Bayes’ Theorem and Inference

Consider two events A and B. Each can either occur or not occur. Event A not occurring is denoted by A’ and B not occurring is denoted by B’. We can construct TWO tree diagrams 

to map out the possible permutations of outcomes. The probability of A occurring given B has occurred is P(A|B).  Events  A and B occurring is P(A & B). 

Note the order does not matter for the latter.
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This is called Bayes’ Theorem, and allows P(B|A) to be 

computed from P(A|B), P(A) and P(B)
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An important application of Bayes’ Theorem is inference. 

Let H be a hypothesis e.g. ‘a person has a particular disease’ and

T be a test for the hypothesis to be true.

If 100 samples are injected with the disease and the test yields a 

positive outcome for 95 of these, then P(T|H) = 0.95. 

100 identical samples were then tested without the disease being 

injected. In this case, 5 were tested positive. Hence P(T|H’) = 0.05

Based upon statistics of the disease, only 1% of patients who exhibit 

symptoms of the disease actually have the disease. Hence P(D) = 0.01.

The manufacturers of the test claim ’95% accuracy’ but this result is 

misleading. Applying Bayes’ Theorem, the probability of having the 

disease given a positive test result is only 16.1%

i.e.  P(H|T) = 0.161



Conditional probability examples

P(A|B) = 1/3,   P(A) = 1/4   and P(B) = 1/5 :   Find all the other probabilities in both tree diagrams corresponding to events A and B .
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Adapted from The Signal and the Noise by Nate Silver p247. 

In this example H means “Terrorist attack”, T means “planes crash into the World Trade Center”

PRIOR PROBABILITY

Initial estimate of how likely it is that terrorists would crash planes into 

Manhattan skyscrapers

P(H) 0.005%

A NEW EVENT OCCURS: FIRST PLANE HITS WORLD TRADE CENTER

Probability of plane hitting if terrorists are attacking Manhattan 

skyscrapers

P(T|H) 100%

Probability of plane hitting if terrorists are not attacking Manhattan 

skyscrapers (i.e. an accident)

P(T|H’) 0.008%

POSTERIOR PROBABILITY

Revised estimate of probability of terror attack, given first plane hitting 

World Trade Center

P(H|T) 38%
But then probability of terror attack, given second

plane hitting the World Trade Center is 99.99%

since we re-do the analysis but set P(H) = 38%

Infamous criminal cases where convictions (or 

acquittals) have been made despite criticisms about 

the use of probability to justify the legal arguments 

(“The Prosecutors' Fallacy”)

Sally Clark (1998) – Accused of murdering her two 

children rather than both dying of Sudden Infant 

Death Syndrome (SIDS).

O.J. Simpson (1994) – Accused of murdering his wife.



Bayes’ Theorem and Venn diagrams
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Proof of Bayes’ Theorem using 

Venn diagrams
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Inverse function of Bayesian Inference Formula

Determine the test probability of success P(T|H) 

as a function of  x = P(H|T). 

Assume symmetry i.e. P(T|H’) = 1 – P(T|H)
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Hence for the disease example above, the test

needs to be 99.888% accurate to yield P(H|T) = 90%
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i.e. Bayes’s Theorem holds
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Assume symmetry i.e. 

P(T|H’) = 1 – P(T|H)
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Note:


