Measurement errors

When a measurement of a physical quantity (e.g. the length of an object) is made, the measurement will not be exact.
Depending on the precision of the measuring device, there will always be a degree of uncertainty about what the measurement actually is.
Note precision is different from accuracy. An accurate instrument is one which is correctly calibrated, i.e. the mean measurement aligns which what is expected. A set of weighing scales which reads 0.1 kg unloaded is both inaccurate and imprecise compared to a laboratory standard weighing balance. If the scales are properly zeroed, then they are only imprecise compared to the lab equipment.

If errors in precision can be thought to be Gaussian'(i.e. 'bell-curved' in shape) and the errors are small compared to the measurement

Note difference between accuracy and precision taken, the Laws of Error Propagation can be used to work out errors in combined measurements, or in quantities formed by functions of measured quantities. (For the latter, the Laws of Error Propagation below assume the component measurements are independent or each other i.e. are uncorrelated).

Addition or subtraction

$$
\begin{array}{ll}
F=A \pm B & F=A \pm B \\
A=\bar{A} \pm \sigma_{A} & A=100 \pm 3 \\
B=\bar{B} \pm \sigma_{B} & B=99 \pm 4 \\
\bar{F}=\bar{A} \pm \bar{B} & \bar{F}=199 \\
\sigma_{F}=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}} & \sigma_{F}=\sqrt{3^{2}+4^{2}} \\
F=\bar{F} \pm \sigma_{F} & \therefore F=199 \pm 5
\end{array}
$$

Products

$$
\begin{aligned}
& F=A^{a} B^{b} C^{c} \ldots . \\
& A=\bar{A} \pm \sigma_{A} \\
& B=\bar{B} \pm \sigma_{B} \\
& \cdots \cdot \\
& \bar{F}=\bar{A}^{a} \bar{B}^{b} \bar{C}^{c} \cdots \cdots \\
& \sigma_{F}=\bar{F} \sqrt{\left(\frac{a \sigma_{A}}{\bar{A}}\right)^{2}+\left(\frac{b \sigma_{B}}{\bar{B}}\right)^{2}+\left(\frac{c \sigma_{C}}{\bar{C}}\right)^{2}} \\
& F=\bar{F} \pm \sigma_{F}
\end{aligned}
$$

$$
\begin{aligned}
& F=\frac{A^{2}}{B} \\
& A=50 \pm 1 \\
& B=100 \pm 2
\end{aligned}
$$

$$
\bar{F}=\frac{50^{2}}{100}=25
$$

$$
\sigma_{F}=25 \sqrt{\left(\frac{2 \times 1}{50}\right)^{2}+\left(\frac{-1 \times 2}{100}\right)^{2}} \approx 1.12
$$

Scaled addition or subtraction

$$
F=25 \pm 1.12
$$

$$
\begin{array}{ll}
F=a A \pm b B & F=3 A-\frac{1}{2} B \\
A=\bar{A} \pm \sigma_{A} & A=100 \pm 3 \\
B=\bar{B} \pm \sigma_{B} & B=200 \pm 4 \\
\bar{F}=a \bar{A} \pm b \bar{B} \\
\sigma_{F}=\sqrt{a^{2} \sigma_{A}^{2}+b^{2} \sigma_{B}^{2}} & \bar{F}=300-100=200 \\
F=\bar{F} \pm \sigma_{F} & \sigma_{F}=\sqrt{3^{2} \times 3^{2}+\left(\frac{1}{2}\right)^{2} \times 4^{2}}=\sqrt{82}
\end{array}
$$

$$
F=200 \pm 9.1
$$

$$
\begin{aligned}
& F=e^{2 B} \ln |A| \\
& A=\bar{A} \pm \sigma_{A} \\
& B=\bar{B} \pm \sigma_{B} \\
& \bar{F}=e^{2 \bar{B}} \ln |\bar{A}| \\
& \sigma_{F}=\sqrt{\left(\frac{e^{\bar{B}}}{\bar{A}}\right)^{2} \sigma_{A}^{2}+\left(2 e^{2 \bar{B}} \ln |\bar{A}|\right)^{2} \sigma_{B}^{2}} \\
& F=\bar{F} \pm \sigma_{F}
\end{aligned}
$$

