Basic ideas of precision, accuracy and error analysis

$$
x_{-} \leq x \leq x_{+}, y_{-} \leq y \leq y_{+}
$$

$$
x_{-}^{2} y_{-} \leq x^{2} y \leq x_{+}^{2} y_{+} \text {and } x_{-}^{2} / y_{+}<x^{2} / y<x_{+}^{2} / y_{-}
$$

$$
\begin{gathered}
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\sigma_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}} \\
x=\bar{x} \pm \sigma_{x}
\end{gathered}
$$

Standard form

Very small and very large quantities are tedious (and error prone) to write out using full decimal notation.

Standard form: e.g. 6.67×10^{-11} is an integer between 1 and 9 followed by $N-1$ digits, where N is the number of significant figures of the quantity.

The power of 10 (the 'exponent') gives you an immediate sense of scale.

Precision. A precise measurement is performed to a high number of significant figures. This means the random error in the measurement (i.e. the standard deviation) is very small compared to the mean value. In calculations, one should quote a answer to the worst precision (i.e. lowest number of significant figures) of the input values.

$$
\begin{aligned}
& x=123.4, \quad y=56.7, \quad z=8.9 \\
& \therefore x=1.234 \times 10^{2}, \quad y=5.67 \times 10^{1}, z=8.9 \\
& a=\frac{x y}{z}=\frac{123.4 \times 56.7}{8.9}=786.1550 \ldots . \quad \text { (unrounded s.f. } \\
& a=7.9 \times 10^{2} \text { to 2.s.f }
\end{aligned}
$$

Accuracy relates to the degree of systematic error. A time of 12.345 s may be very precise, but could easily be 2.000 s out from a true value of 10.345 s if there is some form of accidental offset in the timing system.

Mean and standard deviation

If you have a sample of data, which you believe represents a quantity x subject to random error:

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

is an unbiased estimator of the mean value of the quantity x. N is the number of measurements, and x_{i} is the $i^{\text {th }}$ measurement.

$$
\sigma_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

is an unbiased estimator of the error in this measurement. This is not quite the standard deviation, which involves an N factor rather than $N-1$ in the fraction preceding the sum.

The measurement x can therefore be quoted:

$$
x=\bar{x} \pm \sigma_{x}
$$

ERROR CALCULATION

ACTUAL X VALUE 123

X VALUES WITH RANDOM ERROR

121	125	122	120	128	120	121	124	119
$\begin{array}{ll} \text { MEAN } \mathrm{x} & \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\ 122 \end{array}$								
$\left(x_{i}-\bar{x}\right)^{2}$								
1.211 .21	8.41	0.01	4.41	34.8	4.41	1.21	3.61	9.61

$\begin{aligned} & \text { ERRORIN X } \\ & \quad 3\end{aligned} \quad \sigma_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$ SO: $\quad X=(122+/-3$)

Errors. All measurable quantities will be subject to uncertainty. If quantities $x, y \ldots .$. are within a known range, we can use upper and lower bounds to determine the range of combined quantities.
e.g. $\quad x_{-} \leq x \leq x_{+} \quad y_{-} \leq y \leq y_{+}$

Therefore: $\quad x_{-}^{2} y_{-} \leq x^{2} y \leq x_{+}^{2} y_{+}$ $x_{-}^{2} / y_{+}<x^{2} / y<x_{+}^{2} / y_{-}$

Note the mixing of upper and lower bounds in the last example.
Example: $\quad 1.23 \leq x \leq 4.56,7.89 \leq y \leq 11.2$

$$
\begin{aligned}
& z=\frac{\sqrt{y}}{x} \\
& \frac{\sqrt{7.89}}{4.56}<z<\frac{\sqrt{11.2}}{1.23} \\
& 0.616<z<2.721
\end{aligned}
$$

Laws of Errors - but only if you think errors are normally distributed

If errors are normally distributed, the 'Law of Errors' can be useful (although may result in an artificially tighter uncertainty than upper and lower bounds). Let $f(x, y, z .$.$) be a function of measureable quantities e.g. x=\bar{x} \pm \sigma_{x}$.

$$
f=\bar{f} \pm \sigma_{f} \text { where } \bar{f}=f(\bar{x}, \bar{y}, \bar{z} \ldots): \quad \sigma_{f}^{2}=\left(\frac{\partial f}{\partial x} \sigma_{x}\right)^{2}+\left(\frac{\partial f}{\partial y} \sigma_{y}\right)^{2}+\left(\frac{\partial f}{\partial z} \sigma_{z}\right)^{2}+\ldots
$$

If $f(x, y \ldots)=.k x^{a} y^{b} \ldots \Rightarrow\left(\frac{\sigma_{f}}{f}\right)^{2}=\left(\frac{a \sigma_{x}}{x}\right)^{2}+\left(\frac{b \sigma_{y}}{y}\right)^{2}+\ldots$ You $a d d$ the (power weighted) squares of fractional errors.
If a quantity x is subject to random error and N independent measurements $\left\{x_{i}\right\}$ are made, the unbiased estimate of the mean value of x is: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$. Since the mean value is used in the calculation of the standard deviation, the unbiased estimate of the standard deviation in x (i.e. the 'error' in x) is: $\sigma_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$. We can quote: $x=\bar{x} \pm \sigma_{x}$
Normalized histogram with fitted PDF

Mean $=50.8773$, Median $=51.1451$
STD $=20.3984$, SKEW $=-0.018384$ $L Q=36.8502, U Q=65.0277, I Q R=28.1775$ Number of samples $=1000$

Example:

$$
\begin{aligned}
& z=3 x^{2} y^{-\frac{1}{2}}, \quad x=20 \pm 3, \quad y=40 \pm 5 \\
& \therefore\left(\frac{\sigma_{z}}{\bar{z}}\right)^{2}=\left(\frac{2 \sigma_{x}}{\bar{x}}\right)^{2}+\left(\frac{\frac{1}{2} \sigma_{y}}{\bar{y}}\right)^{2} \\
& \bar{z}=3 \times 20^{2} \times 40^{-\frac{1}{2}}=189.7366 \ldots \\
& \therefore \sigma_{z}=\bar{z} \sqrt{\left(\frac{2 \times 3}{20}\right)^{2}+\left(\frac{\frac{1}{2} 5}{40}\right)^{2}}=58.14 \ldots \\
& \therefore z=(1.9 \pm 0.6) \times 10^{2}
\end{aligned}
$$

