\qquad
\qquad
\qquad
\qquad

Aims of this experiment:

1. Measure the period of a compound pendulum consisting of masses attached to a 1 metre ruler, with holes drilled every 5 cm .
2. Period should be measured for a variety of pivot positions
3. Measured period should be compared (via a graph) to a calculation based upon a Simple Harmonic Motion (SHM) model, which involves computation of both the centre of mass and the moment of inertia of the system.

TASK1: Using a mass balance, record the mass of the ruler and the pair of added masses:

Ruler mass: $\quad M=$ \qquad kg

Weight + screw mass (i.e. one of the pair): $\quad m=$ \qquad kg

TASK2: Set up the experiment as per the diagram on the right. Confirm with your teacher before proceeding any further.

Make sure the added masses are screwed at $b_{1}=0.85 \mathrm{~m}$ and $b_{2}=0.95 \mathrm{~m}$ from the end of the ruler, respectively.

TASK3: Calculate the centre of mass of the system, measured from the unweighted end of the ruler (of length $L=1.00 \mathrm{~m}$).

$$
\bar{x}=\frac{M \times \frac{1}{2} L+m b_{1}+m b_{2}}{M+2 m}
$$

TASK4: Explain why the initial angle of oscillation must be less than one radian for a Simple Harmonic Motion (SHM) model to be assumed.

TASK5: Use the table below to record the times of ten periods, for the pivot positions stated:

Pivot position a /m	$\begin{aligned} & \text { Ten periods } \\ & \text { 10T/s } \\ & \text { REPEAT } 1 \end{aligned}$	$\begin{aligned} & \text { Ten periods } \\ & \text { 10T/s } \\ & \text { REPEAT } 2 \end{aligned}$	$\begin{aligned} & \text { Ten periods } \\ & 10 \mathrm{~T} / \mathrm{s} \\ & \text { REPEAT } 3 \end{aligned}$	Mean value of period T/s	Error in T / s (Standard deviation)	Pivot to centre of mass distance r/m	Moment of inertial $/ \mathrm{kgm}^{2}$	Model period/s
0.01								
0.05								
0.10								
0.15								
0.20								
0.25								
0.30								
0.35								
0.40								
0.45								
0.50								

TOP TIP:

USE A
SPREADSHEET FOR THE CALCULATIONS AND COPY YOUR ANSWERS ACROSS TO THSI SHEET

TASK6: Calculate the moment of inertia I and hence the model period T / s for each pivot position. Take the strength of gravity as $g=9.81 \mathrm{~N} / \mathrm{kg}$.
$\bar{x}=$
. m
$L=1.00 \mathrm{~m}$
$M=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{kg}$
$m=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{kg}$

$$
T=2 \pi \sqrt{\frac{I}{(M+2 m) g r}} \quad I=\frac{M}{3 L}\left((L-a)^{3}+a^{3}\right) \quad r=\bar{x}-a
$$

TASK7: Plot measured vs model periods using the axes below. Determine a line of best fit from the origin and measure the gradient. If using Excel, determine the (square of) the product moment correlation coefficient R^{2}. In the text box below, comment on the correlation between model and measurement. BE QUANTITATIVE.

