COMPOUND PENDULUM

NAME: HOUSE:

CLASS: TEACHER:

Aims of this experiment:

1. Measure the period of a compound pendulum consisting of masses attached to a 1 metre ruler, with holes drilled every 5cm.

- 2. Period should be measured for a variety of pivot positions
- 3. Measured period should be compared (via a graph) to a calculation based upon a Simple Harmonic Motion (SHM) model, which involves computation of both the *centre of mass* and the *moment of inertia* of the system.

TASK1: Using a mass balance, record the mass of the ruler and the pair of added masses:

Ruler mass: $M = \dots kg$

Weight + screw mass (i.e. one of the pair): $m = \dots kg$

TASK2: Set up the experiment as per the diagram on the right. Confirm with your teacher before proceeding any further.

Make sure the added masses are screwed at $b_1 = 0.85$ m and $b_2 = 0.95$ m from the end of the ruler, respectively.

TASK3: Calculate the centre of mass of the system, measured from the unweighted end of the ruler (of length L = 1.00m).

$$\overline{x} = \frac{M \times \frac{1}{2}L + mb_1 + mb_2}{M + 2m}$$

TASK4: Explain why the initial angle of oscillation must be **less than one radian** for a *Simple Harmonic Motion* (SHM) model to be assumed.

TASK5: Use the table below to record the times of **ten periods**, for the pivot positions stated:

Pivot position a /m	Ten periods 10T /s REPEAT 1	Ten periods 10T /s REPEAT 2	Ten periods 10T /s REPEAT 3	Mean value of period T/s	Error in T /s (Standard deviation)	Pivot to centre of mass distance r/m	Moment of inertia I /kgm²	Model period /s
0.01								
0.05								
0.10								
0.15								
0.20								
0.25								
0.30								
0.35								
0.40								
0.45								
0.50								

TOP TIP:

USE A
SPREADSHEET FOR
THE CALCULATIONS
AND COPY YOUR
ANSWERS ACROSS
TO THSI SHEET

TASK6: Calculate the **moment of inertia** I and hence the model period T /s for each pivot position. Take the strength of gravity as g = 9.81 N/kg.

$$\overline{x} = \dots$$
 m $L = 1.00$ m $M = \dots$ kg $m = \dots$ kg

$$T = 2\pi \sqrt{\frac{I}{(M+2m)gr}} \qquad I = \frac{M}{3L} \left((L-a)^3 + a^3 \right) \qquad r = \overline{x} - a$$

TASK7: Plot measured vs model periods using the axes below. Determine a **line of best fit** from the origin and measure the **gradient**. If using Excel, determine the (square of) the product moment correlation coefficient R^2 . In the text box below, comment on the **correlation** between model and measurement. **BE QUANTITATIVE**.

