Introduction to quadratic equations

A quadratic equation is one which contains, in general, a term in x^{2}, a linear term in x plus a constant

$$
y=a x^{2}+b x+c
$$

is the expanded form of the quadratic. The sign of the x^{2} coefficient, a tells us whether the curve is a 'smile' ($a>0$) or a 'frown' $(a<0)$. The constant c tells us where the curve crosses the y axis i.e. when $x=0$.
$a>0$

There are two other 'forms' of a quadratic equation

The factorized form tells us what the x values are when $y=0$. These are called the roots of the quadratic.
$y=\frac{1}{4}(x+4)(x+2)$
$y=0$
$x+4=0 \Rightarrow x=-4$
$x+2=0 \Rightarrow x=-2$
The completed square form tells us the location of the vertex
$y=-(x-3)^{2}-1$
vertex is at coordinate $(3,-1)$

Some applications of

 Quadratic Equations

Potential energy

 in springsFrom car suspension to vibration of molecules!

$F=k x$
$E=\int F d x=\int k x d x=\frac{1}{2} k x^{2}+c$

$v_{z}(y)=\frac{1}{2 \eta} y(h-y) \frac{\partial p}{\partial z}$
$\begin{aligned} & \text { Bernoulli's equation } \\ & \text { (incompressible flow) }\end{aligned} \quad \frac{1}{2} \rho v^{2}+p+\rho g z=$ constant

profile of fluids in a river or pipe

